Solving Logs 4
The fourth of 4 skills relating to logarithms requiresconverting into exponential form because the variableis "inside" the log.
Review the conversion:
The logarithmic form:
These expressions are inverses of one another.
Solving Logarithmic Equations
The exponential form:
15.63 = k
Convert to exponential form:
Example:
5
53 = 8k
125 = 8k
3
8
=
8k
8
Solving Logarithmic Equations
use algebra to solve
+5        +5
Convert to exponential form:
52 = x - 525 = x - 5
30 = x
Example:
5
2
=
x - 5
Solving Logarithmic Equations
use algebra to solve
Solve for n.
Answer: Round to hundredths             (ie. 2.34 or 0.63 or -2.00)
Solving Logarithmic Equations
Solve for n.
Answer: Round to hundredths             (ie. 2.34 or 0.63 or -2.00)
Solving Logarithmic Equations
Solve for n.
Answer: Round to hundredths             (ie. 2.34 or 0.63 or -2.00)
Solving Logarithmic Equations
Solve for n.
Answer: Round to hundredths             (ie. 2.34 or 0.63 or -2.00)
Solving Logarithmic Equations
Solve for n.
Answer: Round to hundredths             (ie. 2.34 or 0.63 or -2.00)
Solving Logarithmic Equations
Solve for n.
Answer: Round to hundredths             (ie. 2.34 or 0.63 or -2.00)
Solving Logarithmic Equations
Solve for n.
Answer: Round to hundredths             (ie. 2.34 or 0.63 or -2.00)
Solving Logarithmic Equations
Solve for n.
Answer: Round to hundredths             (ie. 2.34 or 0.63 or -2.00)
Solving Logarithmic Equations
Solve for n.
Answer: Round to hundredths             (ie. 2.34 or 0.63 or -2.00)
Solving Logarithmic Equations
Solve for n.
Answer: Round to hundredths             (ie. 2.34 or 0.63 or -2.00)
Solving Logarithmic Equations
Altres proves d'interés :

Prova creada amb That Quiz — el lloc de proves matemàtiques per a alumnes de tots nivells.