Operaciones con números reales
  • 1. Es un conjunto de reglas para evitar confusiones al realizar operaciones combinadas.
A) propiedad distributiva
B) jerarquía de las operaciones
C) desigualdad operativa
D) conmutatividad de las operaciones
  • 2. Cuando se combinan varias operaciones, ¿cuáles se resuelven en primer lugar?
A) las adiciones y las sustracciones
B) las sumas
C) las multiplicaciones
D) las multiplicaciones y las divisiones
  • 3. Son operaciones que se resuelven después de las multiplicaciones y las divisiones.
A) las raíces cuadradas
B) las sustracciones
C) las adiciones y las sustracciones
D) las adiciones
  • 4. Observa la siguiente operación combinada:

    5 - 2 x 7 + 3

    ¿Cuál operación se tiene que resolver primero?
A) la suma
B) la resta
C) la multiplicación
D) No importa.
  • 5. Observa la siguiente operación combinada:

    9 + 12 ÷ 3 - 4

    ¿Cuál operación se tiene que resolver primero?
A) No importa.
B) la división
C) la suma
D) la resta
  • 6. Resuelve la siguiente operación combinada:

    3 + 4 x 5
  • 7. Resuelve la siguiente operación combinada:

    7 x 6 - 5
  • 8. Resuelve la siguiente operación combinada:

    15 - 10 ÷ 5
  • 9. Resuelve la siguiente operación combinada:

    24 ÷ 6 + 1
  • 10. Resuelve la siguiente operación combinada:

    7 - 2 x 3 + 10
  • 11. Resuelve la siguiente operación combinada:

    8 + 14 ÷ 7 - 5
  • 12. Resuelve la siguiente operación combinada:

    10 - 6 ÷ 2 + 5 x 4
  • 13. ¿Cómo proceder cuando dos operaciones tienen la misma jerarquía? Por ejemplo una multiplicación y una división o una adición y una sustracción.
A) Se resuelve primero la división.
B) Se resuelven de izquierda a derecha.
C) Se resuelve primero la multiplicación.
D) Se resuelven de derecha a izquierda.
  • 14. Observa la siguiente operación combinada:

    17 - 9 + 4

    ¿Cuál operación se tiene que resolver primero?
A) Se resuelven de izquierda a derecha porque son de la misma jerarquía.
B) la suma
C) No importa.
D) la resta
  • 15. Observa la siguiente operación combinada:

    5 x 8 ÷ 2

    ¿Cuál operación se tiene que resolver primero?
A) Se resuelven de izquierda a derecha porque son de la misma jerarquía.
B) la división
C) la multiplicación
D) No importa.
  • 16. Resuelve la siguiente operación combinada:

    16 ÷ 2 x 4
  • 17. Resuelve la siguiente operación combinada:

    9 - 5 + 3
  • 18. Resuelve la siguiente operación combinada:

    24 ÷ 6 ÷ 2
  • 19. Resuelve la siguiente operación combinada:

    14 - 8 - 5
  • 20. ¿Cómo proceder cuando la operación combinada incluye paréntesis?

    Por ejemplo: 4 x (3 + 2)
A) Se resuelven las operaciones de izquierda a derecha.
B) Se resuelve primero la multiplicación (o división) y después la suma (o resta).
C) Lo que va entre paréntesis se resuelve primero.
D) No importa el orden en que se resuelven las operaciones.
  • 21. ¿Cómo proceder para resolver la siguiente operación combinada?

    16 ÷ (8 - 6)
A) No importa el orden en que se resuelven las operaciones.
B) Es lo mismo que resolver 16 ÷ 8 - 6 (sin paréntesis).
C) Como la división es prioritaria sobre la resta, se resuelve primero.
D) Se resuelve primero la resta porque está entre en paréntesis.
  • 22. ¿Cómo proceder para resolver la siguiente operación combinada?

    (4 + 5 x 2) ÷ 2
A) Como la multiplicación y la división son operaciones prioritarias, se resuelve primero 5 x 2 ÷ 2 y después, se le suma 4.
B) No importa el orden en que se resuelven las operaciones.
C) Lo que va entre paréntesis se resuelve primero. Como hay una suma y una multiplicación, se resuelve primero la multiplicación.
D) Lo que va entre paréntesis se resuelve primero dándonos 18.
  • 23. Resuelve la siguiente operación combinada:

    14 ÷ (7 - 5)
  • 24. Resuelve la siguiente operación combinada:

    (7 - 2) x 3 + 10
  • 25. Resuelve la siguiente operación combinada:

    (18 - 6 ÷ 2) - 9
  • 26. Realizar la suma de las siguientes fracciones propias:
A) 1/5
B) 1/4
C) 2/3
D) 2/4
E) 2
  • 27. Multiplicar las fracciones impropias
A) 4/9
B) 2/9
C) 9/4
D) 9/2
E) 1/9
  • 28. Realizar la division de fracciones de la figura
A) 1/49
B) 7
C) 9/49
D) 3/49
E) 4/49
  • 29. De la grafica. ¿ Que fracción reducida del total del área corresponde a la parte achurada?
A) 2/4
B) 1/4
C) 2/8
D) 4/16
E) 1/2
  • 30. El lado de una cuadrado es 1/4 cm, determinar el perímetro.
A) 1/4 cm
B) 2cm
C) 1cm
D) 4cm
E) 8cm
  • 31. Realizar la siguiente operación con números racionales ó fraccionarios, cuyo numerador es la letra a y el denominador la letra b.
A) 0
B) 2b/a
C) 2a/b
D) a/b
E) a
  • 32. Una cuerda mide 5 1/4 metros, ¿Cuantos pedazos de una longitud de 3/4 de metro se puede obtener de dicha cuerda?
A) 8 pedazos
B) 5 pedazos
C) 6 pedazos
D) 7 pedazos
E) 9 pedazos
  • 33. Sumar las siguiente fracciones que estan en la grafica y el resultado anotarlo como fracción mixta..
A) 1 1/6
B) 7/6
C) 2 1/6
D) 6/7
E) 2 1/7
  • 34. ¿Cuantos envases de 1/4 litro de agua se pueden llenar en un bidon de 6 litros?
A) 30 envases
B) 20 envases
C) 23 envases
D) 24 envases
E) 28 envases
  • 35. Realizar operaciones en la siguiente fracción propia hasta obtener una fraccion irreducible.
A) 5/7
B) 4/7
C) 6/7
D) 7/5
E) 7/6
  • 36. Al aplicar leyes de los exponentes a la expresión : a2a3 obtenemos...
A) a2/3
B) a6
C) a1
D) a5
  • 37. Al aplicar leyes de los exponentes a la expresión :b5b12b10 obtenemos...
A) b7
B) b2
C) b600
D) b27
  • 38. Al aplicar leyes de los exponentes a la expresión :(m4)5 obtenemos...
A) m1.2
B) m1
C) m9
D) m20
  • 39. Al aplicar leyes de los exponentes a la expresión :(n2m5)2 obtenemos...
A) (nm)14
B) n4m7
C) n4m10
D) n0m3
  • 40. Al aplicar leyes de los exponentes a la expresión :(a5a3)10 obtenemos...
A) a20
B) a2
C) a150
D) a80
  • 41. Al aplicar leyes de los exponentes a la expresión :n18/n13 obtenemos...
A) n5
B) n31
C) n1.38
D) n234
  • 42. Al aplicar leyes de los exponentes a la expresión :(n3/m5)3 obtenemos...
A) n9/m15
B) n6m15
C) n6/m8
D) n6/m15
  • 43. Al aplicar leyes de los exponentes a la expresión :(m50x100)/(m20x10) obtenemos...
A) m1000x1000
B) m30x90
C) m70 x110
D) m70x90
  • 44. Al aplicar leyes de los exponentes a la expresión :(a4b7c12)5 obtenemos...
A) a9b12c17
B) a20b35c60
C) a9b2c7
D) a-1b2c7
  • 45. Al aplicar leyes de los exponentes a la expresión :1/a-2 obtenemos...
A) a-1
B) a-2
C) a-3
D) a2
  • 46. Al aplicar leyes de los exponentes a la expresión :b-4 obtenemos...
A) 1/b-1
B) 1/4
C) 1/b-4
D) 1/b4
  • 47. Al aplicar leyes de los exponentes a la expresión :(m12n4)(m10n20) obtenemos...
A) m2n16
B) m120n80
C) m22n24
D) m8n6
  • 48. Al aplicar leyes de los exponentes a la expresión :a25b18/a20 obtenemos...
A) a5b-2
B) a5b18
C) ab23
D) a-5b18
  • 49. Al aplicar leyes de los exponentes a la expresión :(a8b2)5 a12 obtenemos...
A) a52b10
B) a15b7
C) a240b10
D) a40b3
  • 50. Al aplicar leyes de los exponentes a la expresión :(m7n12)30 obtenemos...
A) m210n360
B) m23n18
C) m37n42
D) m37n18
  • 51. Al aplicar leyes de los exponentes a la expresión :a6n20/(a6n10) obtenemos...
A) n10
B) an200
C) an10
D) n30
  • 52. Al aplicar leyes de los exponentes a la expresión :n6m20m6n10 obtenemos...
A) n12m30
B) n60m120
C) n16m26
D) n36m200
  • 53. Al aplicar leyes de los exponentes a la expresión : (412 410)10 obtenemos...
A) 4220
B) 41200
C) 412
D) 420
  • 54. Al aplicar leyes de los exponentes a la expresión : x23x20 obtenemos...
A) x3
B) x460
C) x-34
D) x43
  • 55. Al aplicar leyes de los exponentes a la expresión : w28x20/w6 obtenemos...
A) w48x14
B) w22x14
C) w22x20
D) w20x14
Altres proves d'interés :

Prova creada amb That Quiz — el lloc per crear proves matemàtiques i d'altres matèries.