GEO: 4-6 QC (CPCTC) (...OPTIONAL...)
1. Tell if the highlighted statement    is true or false and why (if it's true).      AT ≅ UC
 False
 True; ∆'s ≅ by SAS, and AT ≅ UC by CPCTC
 True; ∆'s ≅ by ASA, and AT ≅ UC by def. ≅ sides
 True; ∆'s ≅ by SAS, and AT ≅ UC by SSS
T
A
E
P
U
C
2. Tell if the highlighted statement    is true or false and why (if it's true).     ∡T ≅ ∡C
 True; ∆'s ≅ by SAS, and ∡T ≅ ∡C by CPCTC
 True; ∆'s ≅ by SSS, and AT ≅ UC by SAS
 False
 True; ∆'s ≅ by SAS, and ∡T ≅ ∡C by Third ∡ Thm.
T
A
E
P
U
C
3. Tell if (and why) the highlighted statement is true.

∆'s ≅ by SSS, thus true by CPCTC
∆'s ≅ by SSS, thus false ∡'s ≇
 ∆'s  ≅ by SAS , thus true by CPCTC
∆'s are not ≅, thus false ∡'s ≇
∡A ≅ ∡B
A
C
B
D
4. Match the theorem that proves the ∆'s are ≅
Choose from:
A. SSS     B. SAS    C. AAS    D. ASA     E. HL
∆'s ≅
use capital letters
∆'s ≅
∆'s ≅
5.  What does CPCTC stand for?
Cranberry Poprocks and Coconut Pie are Crunchy
Congruent Parts of Corresponding Triangles
    are Congruent
Congruent Parts of Congruent Triangles are
    Corresponding
Corresponding Parts of Congruent Triangles 
    are Congruent
6.  In two triangles, ∡C≅∡T and CA≅TR.  Assume     that ∆CAN≅∆TRY.  What other parts do we     know are congruent by using CPCTC?  
∡N≅∡Y
CA≅TY
*Check ALL that apply.*
∡A≅∡R
AN≅RY
7.  In two triangles, ∡R≅∡E and AM≅LG.  Assume     that ∆ARM≅∆LEG.  What other parts do we     know are congruent by using CPCTC?  
∡A≅∡L
RA≅EL
*Check ALL that apply.*
∡G≅∡R
MR≅LE
8.  Drag the correct justifications to match with the statements in the proof       below. Put the one that is NOT used by the words, "not used".
1. EF∕∕DG; EF≅GD                                                  1. Given    
2. ∡HEF≅∡HGD; ∡HFE≅∡HDG                                2.
3. ΔEHF ≅ ΔGHD                                                    3.
4. HD≅HF                                                              4.
Given: EF∕∕DG;  EF ≅ GDProve: HD ≅ HF
not used: 
AAS ≅ Theorem
?
D
E
ASA ≅ Theorem
?
CPCTC
?
H
AIA Theorem
?
F
G
9.  Drag the correct justifications to match with the statements in the proof       below. Put the one that is NOT used by the words, "not used".
2. EH≅GH; FH≅DH                                             2. 
3. ΔEHF ≅ ΔGHD                                               3.
4. ∡HEF≅∡HGD                                                4.
1. H is the midpoint of EG & FD;  EF≅GD           1. Given  
Given: H is the midpoint           of EG & FD; EF ≅ GDProve: ∡HEF ≅ ∡HGD
not used: 
AIA Theorem
?
D
E
definition of a midpoint
?
CPCTC
?
SSS ≅ Theorem
?
H
F
G
10.  What could you use to prove ∡A ≅ ∡Z?
CPCTC
Third ∡'s theorem
definition of an 
    acute angle
AAA ≅ Theorem
Altres proves d'interés :

Prova creada amb That Quiz — el lloc de proves matemàtiques per a alumnes de tots nivells.