A) -1,5 ; 0 ; 1,5 B) -1,5 ; 1,5 ; 3 C) no posee raíces reales D) -1,5 ; 0 ;1,5 ;3
A) es una forma más cómoda de realizar una división B) es una regla de cálculo de poca utilidad C) sirve para dividir un polinomio cualquiera entre otra de la forma x - a
A) siempre es producto de dos polinomios de primer grado B) siempre puede descomponerse en factores C) tendrá siempre dos raíces distintas D) puede no tener raíces reales
A) -3 ; -2 ; -1 B) 1 ; 2 ; 5 C) -2 ; -1 ; 3 D) 1 ; 2 ; 3
A) -2 es raíz de p B) p(2) = 0 C) p(x) es divisible entre (x + 2)
A) -3 es raíz de p B) el resto de la división de p(x) entre (x - 3) es 0 C) p(-3) = 0
A) f(-7) = 0 B) el valor numérico de f(x) en x = 7 es 0 C) f(x) es divisible entre (x - 7)
A) -39 B) 39 C) -87
A) q(-a) = 0 B) q(0) = 0 C) q(a) = 0
A) 9x² – 12x + 4 B) 9x² – 12x – 4 C) 9x² – 6x + 4
A) Pude tener sus tres raíces imaginarias B) Si no tiene una raíz entera, no sabemos descomponerlo en factores. C) Como máximo puede tener tres raíces.
A) Tendrá siempre dos raíces reales distintas. B) Posee como máximo tres raíces reales distintas. C) Puede no tener raíces reales.
A) 9x² + 6x + 1 B) 9x² + 1 C) 9x² + 6x + 2 D) 3x² + 6x + 1
A) 2x (x – 1) B) x² (x – 2) C) 2x (x² – 1) |