TABLA DE REGLAS DE DERIVACIÓN
__ | 1. | y = k | | A. | y' = 1 | __ | 2. | y = k . u(x) | | B. | y ' = 0 | __ | 3. | y = log x | | C. | y' = u'(x) + v'(x) | __ | 4. | y = Lx | | D. | y' = k . u'(x) | __ | 5. | y = u(x) + v(x) | | E. | y' = [u'(x).v(x) - u(x).v'(x)] / v2(x) | __ | 6. | y = u(x) . v(x) | | F. | y' = u'(x).v(x) + u(x).v'(x) | __ | 7. | y = u(x) / v(x) | | G. | y' = n . xn-1 | __ | 8. | y = x | | H. | y' = 1 / (2 . x1/2) | __ | 9. | y = x1/2 | | I. | y' = 1 / x | __ | 10. | y = xn | | J. | y' = 1 / (x . L10) |
__ | 11. | y = 3x | | A. | y' = ex | __ | 12. | y = arccos x | | B. | y' = L3 . 3x | __ | 13. | y = arcsen x | | C. | y' = cos x | __ | 14. | y = arctg x | | D. | y' = - sen x | __ | 15. | y = cos x | | E. | y' = 1 + tg2 x | __ | 16. | y = cotg x | | F. | y' = -1 - cotg2 x | __ | 17. | y = ex | | G. | y' = 1 / (1-x2)1/2 | __ | 18. | y = sen x | | H. | y' = -1 / (1-x2)1/2 | __ | 19. | y = tg x | | I. | y' = 1 / ( 1 + x2) | __ | 20. | y = uv _siendo u,v funciones | | J. | y' = uv . Lu . v´ + v . uv-1 . u´ |
__ | 21. | y = 2u(x) | | A. | y' = 1 / [3 . (x2)1/3] | __ | 22. | y = arccos[u(x)] | | B. | y' = n . [u(x)]n-1. u´(x) | __ | 23. | y= arctg[u(x)] | | C. | y' = 1 / [4 . (x3)1/4] | __ | 24. | y = eu(x) | | D. | y' = u'(x) / u(x) | __ | 25. | y = log2(1-2x) | | E. | y' = u'(x) / [1 + u2(x)] | __ | 26. | y = L[u(x)] | | F. | y' = eu(x) . u'(x) | __ | 27. | y = tg[u(x)] | | G. | y' = 2u(x) . u'(x) . L2 | __ | 28. | y = x1/3 | | H. | y' = - u'(x) / [1-u2(x)]1/2 | __ | 29. | y = x1/4 | | I. | y' = u'(x) / cos2[u(x)] | __ | 30. | y = [u(x)]n | | J. | y' = -2 / [(1-2x)L2] |
|
Studenten, die diese Prüfung ablegten, nahmen auch :