A) -1,5 ; 0 ;1,5 ;3 B) -1,5 ; 0 ; 1,5 C) -1,5 ; 1,5 ; 3 D) no posee raíces reales
A) es una forma más cómoda de realizar una división B) es una regla de cálculo de poca utilidad C) sirve para dividir un polinomio cualquiera entre otra de la forma x - a
A) siempre puede descomponerse en factores B) puede no tener raíces reales C) siempre es producto de dos polinomios de primer grado D) tendrá siempre dos raíces distintas
A) -3 ; -2 ; -1 B) 1 ; 2 ; 5 C) -2 ; -1 ; 3 D) 1 ; 2 ; 3
A) -2 es raíz de p B) p(2) = 0 C) p(x) es divisible entre (x + 2)
A) -3 es raíz de p B) p(-3) = 0 C) el resto de la división de p(x) entre (x - 3) es 0
A) el valor numérico de f(x) en x = 7 es 0 B) f(x) es divisible entre (x - 7) C) f(-7) = 0
A) 39 B) -87 C) -39
A) q(a) = 0 B) q(0) = 0 C) q(-a) = 0
A) 9x² – 12x + 4 B) 9x² – 6x + 4 C) 9x² – 12x – 4
A) Pude tener sus tres raíces imaginarias B) Como máximo puede tener tres raíces. C) Si no tiene una raíz entera, no sabemos descomponerlo en factores.
A) Tendrá siempre dos raíces reales distintas. B) Puede no tener raíces reales. C) Posee como máximo tres raíces reales distintas.
A) 9x² + 6x + 1 B) 9x² + 1 C) 3x² + 6x + 1 D) 9x² + 6x + 2
A) 2x (x² – 1) B) 2x (x – 1) C) x² (x – 2)
A) 9x²-1 B) 9x²+1 C) 9x²-6x+1 D) 6x²-3x+1
A) una recta B) una parabola C) una curva |