Classify Triangles by Angle and Sides (Pythagorean Theorem)
25u2
?
c=5
?
√13
?
13u2
?
18u2
?
3√2
?
The triangle is
a2+b2=
if a<b<cand   c2 a2+b2
then the triangle ABC is acute.
c2
.
25u2
?
c=5
?
b=
√(22+42)
?
5u2
?
a=
√(12+22)
?
20u2
?
if a<b<cand   c2 a2+b2
then the triangle ABC is acute.
The triangle is
a2+b2=
c2
.
25u2
?
c=5
?
b=
a=
5u2
?
√(12+22)
?
√(12+32)
?
10u2
?
if a<b<cand   c2 a2+b2
then the triangle ABC is acute.
The triangle is
a2+b2=
c2
.
Given ΔABC, a<b<c, then c2<a2+b ΔABC is acute
Given ΔABC, a<b<c, then c2=a2+b ΔABC is right.
Given ΔABC, a<b<c, then c2>a2+b ΔABC is obtuse.
3, 4, 6 →
Classify the triangle given the sides.
c2=
a2+b2=
 ΔABC is
.
Given ΔABC, a<b<c, then c2<a2+b ΔABC is acute
Given ΔABC, a<b<c, then c2=a2+b ΔABC is right.
Given ΔABC, a<b<c, then c2>a2+b ΔABC is obtuse.
Classify the triangle given the sides.
5,12,13→
c2=
a2+b2=
 ΔABC is
.
Given ΔABC, a<b<c, then c2<a2+b ΔABC is acute
Given ΔABC, a<b<c, then c2=a2+b ΔABC is right.
Given ΔABC, a<b<c, then c2>a2+b ΔABC is obtuse.
6, 8, 9 →
Classify the triangle given the sides.
c2=
a2+b2=
 ΔABC is
.
Given ΔABC, a<b<c, then c2<a2+b ΔABC is acute
Given ΔABC, a<b<c, then c2=a2+b ΔABC is right.
Given ΔABC, a<b<c, then c2>a2+b ΔABC is obtuse.
Classify the triangle given the sides.
3, 3, 4 →
c2=
a2+b2=
 ΔABC is
.
Classify the triangle given the sides.
a
?
B
C
c
?
b
?
A
√2, √5, 3→
a2+b2=
c2=
 ΔABC is
.
Classify the triangle given the sides.
a
?
B
C
c
?
b
?
A
√5, √5, 4→
a2+b2=
c2=
 ΔABC isisosceles and             .
Classify the triangle given the sides.
a
?
B
C
c
?
A
b
?
√10, √10, 2→
a2+b2=
 ΔABC isisosceles and                    
c2=
.
Οι μαθητές που έκαναν αυτή την δοκιμασία είδαν επίσης :

Δημιουργήθηκε με That Quiz — η παραγωγή δοκιμασιών στα μαθηματικά με στοιχεία για άλλες θεματικές ενότητες.