ThatQuiz Βιβλιοθήκη δοκιμασιών Εκτέλεση της δοκιμασίας τώρα
Vertex Form !!!
Συνεισφορά από: Smith
(Αρχικός συντάκτης: Tsygan)
The squared part = 0
when x =3 (axis of symmetry)

When x=3, y=4 (vertex)
Vertex form of a parabola:
y = (x-h)2+ k
y = (x-3)2+ 4
the line x=3 is the:
axis of symmetry
?
(3,4) is the:
vertex
?
4
3
2
x
y = (  -3)2+ 4
y = (x-3)2+ 4
y = (  -3)2+ 4
y = (  -3)2+ 4
3
4
2
5
4
?
y
5
?
4
3
2
x
y = (  -3)2+ 4
y = (x-3)2+ 4
y = (  -3)2+ 4
y = (  -3)2+ 4
4
3
2
5
4
y
5
Vertex
This is the vertex form equation of a parabola:
What x value
cancels out
(x-2) ???
(           ,           )
y =(x -2)2+1
The number
at the end is
the y value
Vertex
2
-2
2
-2
4
-4
Describe this vertex:
minimum (low)
maximum (high)
y =(x -2)2+1
Vertex at (2,1)
Vertex
This is the vertex form equation of a parabola:
What x value
cancels out
(x+2) ???
(           ,           )
y =-(x+2)2+3
The number
at the end is
the y value
Vertex
2
-2
2
-2
4
-4
Describe this vertex:
minimum (low)
maximum (high)
y =-(x+2)2+3
Vertex at (-2,3)
Vertex
This is the vertex form equation of a parabola:
What x value
cancels out
(x-1) ???
(           ,           )
y =(x-1)2 -3
The number
at the end is
the y value
Vertex
2
-2
2
-2
4
-4
Describe this vertex:
minimum (low)
maximum (high)
y =(x-1)2-3
Vertex at (1,-3)
Vertex
This is the vertex form equation of a parabola:
What x value
cancels out
(x+1) ???
(           ,           )
y =-(x+1)2 +2
The number
at the end is
the y value
Vertex
2
-2
2
-2
4
-4
Describe this vertex:
minimum (low)
maximum (high)
y =-(x+1)2+2
Vertex at (-1,2)
y= (x + 4)2 -5
y= -(x - 8)2 +1
(        ,        )
(        ,        )
Vertex
Vertex
y= (x - 9)2 +3
y= -(x + 7)2 -6
(        ,        )
(        ,        )
Vertex
Vertex
The End
Οι μαθητές που έκαναν αυτή την δοκιμασία είδαν επίσης :

Δημιουργήθηκε με That Quiz — δικτυακός τόπος για τη δημιουργία δοκιμασιών και βαθμολόγησης στα μαθηματικά και σ` άλλα αντικείμενα.