Test de la Normal Recuerda Bien 2.8 2,8 Mal Test de la Normal 1) Considera la siguiente función de densidad: Responde: P(X≥0)= P(X≤2)= f(1)= f(2)= f(5)= Área bajo f(x)= P(1≤X≤3)= P(2≤X≤5)= Test de la Normal 2) Responde con verdadero (V) o falso (F) (en mayúscula): Si f(x) es la función de densidad de una variableNormal de media μ=0 y desviación típica δ=1 El Dominio de f(x) es toda la recta Real: f(x) no presenta cortes con el eje OY: f(x) es simétrica respecto a la recta x=δ: El área bajo f(x) es cero: 3) Si Z≈N(0,1). Calcula las siguientes probabilidades: a) P(Z≤1.21)= b) P(Z<1.21)= c) P(Z≥1.21)= d) P(Z≥−1.21)= Test de la Normal Test de la normal 4) Si Z≈N(0,1), calcula las siguientes probabilidades: a) P(1.31≤Z≤1.61)= c) P(−1.61≤Z≤-1.31)= d) P(−1.30≤Z≤1.60)= Test de la normal 5) Si X≈N(8,2). Calcula las siguientes probabilidades: a) P(X<9.4)= b) P(X≥10)= c) P( 11≤X≤14)= d) P(6≤X≤7)= Test de la normal 6) Si Z≈N(0,1), calcula el k-valor en los siguientes casos: a) P(Z≤k)= 0.9940 k= b) P(Z≥k)=0.9871 k= c) P(Z≥k)=0.1736 k= |