En este caso despejaremos la x de la primera ecuación por ser más pequeño el coeficiente.. 2x + y = 2 x + y = 3 Resuelve el sistema de ecuaciones por el método: Despejamos una incógnita en una de las dos ecuaciones. x= } Despeje SUSTITUCIÓN 1º Sustituimos el valor de la x en la segunda ecuación. Obtenemos una ecuación de 1º con una incógnita. 2( ) +y =2 2 + y = 2 La segunda ecuación es: x sustitución 2º Resolvemos la ecuación de primer grado con una incógnita obtenida.. 2(3-y) + y = 2 6-2y + y = 2 Ya sabemos el valor de la y. 3º y= Calculamos el valor de la otra incógnita sustituyendo en el despeje el valor obtenido. x= 3 - y x= 4º 2x + y = 2 x + y = 3 El sistema de ecuaciones tiene la solución: En ese punto se cortan las rectas. } ( , ) 2 -2 4 -4 6 -6 2 -2 4 -4 6 -6 8 -8 10 -10 ( , ) ( , ) x+y=3 2 -2 4 -4 6 -6 2 -2 4 -4 6 -6 8 -8 10 -10 ( , ) 2x+y=2 ( , ) Con la aplicación geogebra puedes representar fácilmente los sistemas de ecuaciones. |