A) Una derivada B) Una asíntota C) Un límite D) Una abscisa
A) René Descartes y Gottfried Leibniz B) René Descartes y James Clerk Maxwell C) Isaac Newton y Gottfried Leibniz D) Isaac Newton y Tomás Alva Edison
A) Dx(y) B) f(dx) C) f´(x) D) d[f(x)]/dx
A) La aceleración del objeto B) La velocidad del objeto C) El rango de valores del objeto D) La nueva ubicación del objeto
A) Una multiplicación abreviada de valores que no son constantes B) La aceleración de un objeto con respecto al tiempo C) Una suma abreviada de valores que no son constantes D) La rapidez con que cambia una función
A) Si f(x) = cx Entonces f'(x) = (c')(x') B) Si f(x) = cx Entonces f'(x) = x (c') C) Si f(x) = cx Entonces f'(x) = c (x') D) Si f(x) = cx Entonces f'(x) = (c' + x')
A) es el valor de la potencia multiplicado por la variable elevada a la potencia original restada de uno. B) es la variable cuya potencia le hemos restado uno. C) es la multiplicación de una constante igual a la potencia de la variable. D) es elevar la variable a una potencia obtenida de multiplicar la constante por el exponente restándole uno.
A) el pequeñísimo incremento que tiene el valor x. B) un incremento que se interpreta como la pendiente de la recta. C) el pequeñísimo incremento que tiene la función. D) un incremento cuyo valor es el límite de la función
A) La función no tiene discontinuidades en un intervalo de valores y su límite es distinto de cero. B) La función tiene límite distinto al infinito y distinto de cero. C) La función existe en valores mayores a cero de la variable independiente, y dicha variable es diferente al infinito. D) La función existe en un intervalo y es continua en ese mismo intervalo
A) La ordenada al origen de la recta tangente. B) La asíntota a la cual tiende la función. C) La pendiente de la recta tangente a la curva en ese punto. D) El límite de la función. |