Geo:2.4: Two-column proof part1
Which of the conclusions below is the correct justification for 
statement 2?
Symmetric Property of ≅
Angle Addition
 E

1.  ∡DEF ≅ ∡FEG


2.  EF bisects ∡DEG

     D
F
G
Definition of congruent ∡'s
Definition of Angle bisector

1.  Given


2.  __?__

Segment  Addition Postulate
Angle Addition Postulate
2.  m∡DEF + m∡FEG = m∡DEG
1. EF is on the interior of ∡DEG
What is the correct justification for statement 2?
 E
     D
F
G

Addition Property of =

Definition of Angle bisector
2. ____?______
1. Given
Complete the proof below by dragging the correct reason to each statement being made. 

1.Q is the midpoint of PR


2.  PQ ≅ QR

statements
P                       Q                     R
definition of midpoint
?
Given
?
reasons
linear pair theorem
?
not used:
T
Complete the proof below by dragging the correct reason to each statement being made. 
D

1.  ∡D is a right angle

2.  ∡E is a right angle


3.  ∡D ≅ ∡E

statements
 E
All right angles are ≅
?
Definition of congruent angles
?
Given
?
reasons
not used:
Complete the proof below by dragging the correct reason to each statement being made. 

1.  m∡HED = 40


2.  m∡HED + m∡DEF = m∡HEF


3.   40 + m∡DEF = m∡HEF

statements
 E
H
     D
F
G
Not used: 
Substitution Property of =
?
Angle Addition Postulate
?
Transitive Property of =
?
reasons
Given
?
Complete the proof below by dragging the correct reason to each statement being made. 

1.  AB = EF


2.  AB + BC = AC


3.  EF + BC = AC

statements
E                F
A               B                                        C
not used:
Segment Addition Postulate
?
Addition Property of =
?
Substitution Property of =
?
reasons
Given
?
Complete the proof below by dragging the correct reason to each statement being made. 

1.  VW ≅ WX


2.  WX ≅ XY


3.  VW ≅ XY

statements
V                    W                  X                    Y

 Transitive Property of =

?
Substitution Property of =
?
reasons
Given
Given
?
not used:
Intereseko beste azterketa batzuk :

Azterketa honekin sortua That Quiz — matematika praktikatzen den tokia.