Tema 3 Monomis i Polinomis Opera i Simplifica
  • 1. x (x2 – 5) – 3x2 (x + 2) – 7 (x2 + 1) =
A) 3x4 – 5x – 7
B) Cap de totes
C) –2x3 – 13x2 – 5x – 7
D) x2 – 5x – 7
E) -13x2 + 5x +7
  • 2. 5x2 (–3x + 1) – x (2x – 3x2) – 2 · 3x =
A) –12x3 + 9x2 – 6x
B) 12x3 - 3x2 + 6x
C) –12x3 + 3x2 – 6x
D) Cap de totes
E) –12x6 + 3x4 – 6x
  • 3. (2x2 + 3)(x – 1) – x (x – 2) =
A) 2x3 – 3x4 + 5x2 – 3
B) 2x3 – 6x2 + 10x – 9
C) Cap de totes
D) 2x3 – 3x2 + 5x – 3
E) 2x3 – -3x2 - 5x + 3
  • 4. (x2 – 5x + 3)(x2 – x) – x(x3 – 3) =
A) –6x3 + 8x2
B) –12x3 + 16x2
C) –1–6x6 + 8x4
D) 6x3 - 8x2
E) Cap de totes
  • 5. 6x2 – 7x2 + 3x2
A) 2x2
B) Cap de totes
C) 2x4
D) 2x6
E) -2x2
  • 6. Per a sumar Monomis
A) Es poden sumar tots
B) Sols es multipliquen
C) Sols si coincideix del coeficient
D) Mai es poden sumar
E) Tenen que ser semblats
  • 7. Per a multiplicar Monomis
A) Es multiplquen els exponents amb coincidencia de la part literal i es sumen els coeficients
B) Mai es poden multiplicar
C) Tenen que ser semblats
D) Sols es poden sumar
E) Es multipliquen els coeficients i es sumen els exponents de la part literal coinciden
  • 8. Dos monomis son Semblats
A) Quan tenen identica part literal
B) Quan tenen el mateix coeficien
C) Quan tenen el mateix signe
D) Quan son inversos
E) Quan tenen el mateix exponent
  • 9. 3x2zy3 i -13y3zx2z Aquests monomis son semblats
A) No
B) Si
  • 10. 3x4zy6 i 3y3zx2z Aquests monomis son semblats
A) Si
B) No
Intereseko beste azterketa batzuk :

Azterketa honekin sortua That Quiz — matematika gunea.