2 -2 4 -4 2 -2 4 -4 6 -6 REFLECT PT A OVER Y-AXIS A'=( ) A 2 -2 4 -4 2 -2 4 -4 6 -6 A REFLECT PT A OVER X-AXIS A'=( ) 2 -2 4 -4 2 -2 4 -4 6 -6 Translate Pt B up 5 units and right 6 units B B'=( ) 2 -2 4 -4 2 -2 4 -4 6 -6 Translate Pt C left 4 units and up 3 units c'=( C ) 2 -2 4 -4 2 -2 4 -4 6 -6 Rotate Pt D about the origin, clockwise 180o D'=( ) D PT E (4,-9) IS DILATED BY A SCALE FACTOR OF 8 What is the image of Pt E? E' =( ) Pt F (24,12) is dilated by 1/4. What it the image of F? F'=( ) 2 -2 4 -4 2 -2 4 -4 6 -6 Name the Line y=6 x=3 y=3 x= -6 2 -2 4 -4 2 -2 4 -4 6 -6 x=5 y=5 x=4 y= -4 Name the Line 2 -2 4 -4 2 -2 4 -4 6 -6 Name the Line y= -2 y=2 x= -2 x= -2 2 -2 4 -4 2 -2 4 -4 6 -6 Name the Line x= -3 y= -3 x= 4 y= -4 2 -2 4 -4 2 -2 4 -4 6 -6 Reflect Pt A over x = 2 A'=( ) A 2 -2 4 -4 2 -2 4 -4 6 -6 Reflect Pt A over Y= -1 A'=( ) A A ∆ABC is dilated by a scale factor of 4. Find the lengths of the image of ∆A'B'C' 6 B 7 9 C A' B' C' 2 -2 4 -4 6 -6 2 -2 4 -4 6 -6 8 -8 10 -10 A' ( A , ) Rotate pt A 180o clockwise 2 -2 4 -4 6 -6 2 -2 4 -4 6 -6 8 -8 10 -10 A' Rotate pt A 90o clockwise ( , ) A 2 -2 4 -4 6 -6 2 -2 4 -4 6 -6 8 -8 10 -10 A' Rotate pt A 270o clockwise ( , ) A 2 -2 4 -4 6 -6 2 -2 4 -4 6 -6 8 -8 10 -10 which quadrant does A end up in? A 1 2 3 4 counterclockwise Rotate pt A 180o 2 -2 4 -4 6 -6 2 -2 4 -4 6 -6 8 -8 10 -10 4 3 2 1 which quadrant does A end up in? counterclockwise Rotate pt A 270o A 2 -2 4 -4 6 -6 2 -2 4 -4 6 -6 8 -8 10 -10 which quadrant does A end up in? A 4 3 1 2 counterclockwise Rotate pt A 90o 2 -2 4 -4 6 -6 2 -2 4 -4 6 -6 8 -8 10 -10 A' ( A , ) 3.translate left 2 / up 1 4. where is image now? 2. Reflect over x-axis 1. Rotate 90o clockwise 2 -2 4 -4 6 -6 2 -2 4 -4 6 -6 8 -8 10 -10 1. Rotate 180o clockwise 2. Reflect over y-axis 1.translate right 5 up3 4. where is image now? A' ( , ) A |