Equal Values Method

Enter the x and y coordinates for the point of

intersection.

 

If you find that the lines are parallel or they will

intersect everywhere (same line), leave the

coordinates blank and select the appropriate choice.

Find the point of

intersections using the

Equal Values Method.

Intersect everywhere (same line)

No solution (parallel lines)

y = 3x + 1

y = 2x + 8

(      ,      )

Intersect everywhere (same line)

No solution (parallel lines)

y = x + 13

y = 3x + 1

(      ,      )

Intersect everywhere (same line)

No solution (parallel lines)

y = 5x - 1

y = x + 11

(      ,      )

Intersect everywhere (same line)

No solution (parallel lines)

y = -3x + 7

y = 2x - 3

(      ,      )

Intersect everywhere (same line)

No solution (parallel lines)

y = -x + 1

y = 2x + 16

(      ,      )

Intersect everywhere (same line)

No solution (parallel lines)

y = 3x + 1

y = 3x + 8

(      ,      )

Intersect everywhere (same line)

No solution (parallel lines)

y = -4x - 3

y = -2x + 11

(      ,      )

Intersect everywhere (same line)

No solution (parallel lines)

y = 7x + 22

y = x + 22

(      ,      )

Intersect everywhere (same line)

No solution (parallel lines)

y = 10x + 8

y = -2x - 100

(      ,      )

Intersect everywhere (same line)

No solution (parallel lines)

y = -x + 3

y = -x + 3

(      ,      )

Intersect everywhere (same line)

No solution (parallel lines)

y = -3x + 5

y = 2x + 35

(      ,      )

Intersect everywhere (same line)

No solution (parallel lines)

y = 25x + 120

y = 35x + 20

(      ,      )

y = -8.50x + 1000

y = -7.00x + 910

Intersect everywhere (same line)

No solution (parallel lines)

(      ,      )

Intersect everywhere (same line)

No solution (parallel lines)

y = 0.5x + 12

y = 0.5x + 31

(      ,      )

Intersect everywhere (same line)

No solution (parallel lines)

y = x + 3

y = -x - 5

(      ,      )
Les étudiants ayant complété ce test ont aussi complété :

Créé avec That Quiz — un site de tests de mathématiques pour des étudiants de tous les niveaux d'études.