A) -1,5 ; 0 ; 1,5 B) -1,5 ; 1,5 ; 3 C) -1,5 ; 0 ;1,5 ;3 D) no posee raíces reales
A) es una forma más cómoda de realizar una división B) sirve para dividir un polinomio cualquiera entre otra de la forma x - a C) es una regla de cálculo de poca utilidad
A) puede no tener raíces reales B) siempre es producto de dos polinomios de primer grado C) siempre puede descomponerse en factores D) tendrá siempre dos raíces distintas
A) -3 ; -2 ; -1 B) 1 ; 2 ; 5 C) -2 ; -1 ; 3 D) 1 ; 2 ; 3
A) -2 es raíz de p B) p(x) es divisible entre (x + 2) C) p(2) = 0
A) -3 es raíz de p B) el resto de la división de p(x) entre (x - 3) es 0 C) p(-3) = 0
A) f(x) es divisible entre (x - 7) B) el valor numérico de f(x) en x = 7 es 0 C) f(-7) = 0
A) 39 B) -39 C) -87
A) q(a) = 0 B) q(-a) = 0 C) q(0) = 0
A) 9x² – 12x + 4 B) 9x² – 12x – 4 C) 9x² – 6x + 4
A) Como máximo puede tener tres raíces. B) Pude tener sus tres raíces imaginarias C) Si no tiene una raíz entera, no sabemos descomponerlo en factores.
A) Puede no tener raíces reales. B) Posee como máximo tres raíces reales distintas. C) Tendrá siempre dos raíces reales distintas.
A) 3x² + 6x + 1 B) 9x² + 6x + 2 C) 9x² + 6x + 1 D) 9x² + 1
A) x² (x – 2) B) 2x (x – 1) C) 2x (x² – 1) |