A) no posee raíces reales B) -1,5 ; 0 ;1,5 ;3 C) -1,5 ; 0 ; 1,5 D) -1,5 ; 1,5 ; 3
A) es una forma más cómoda de realizar una división B) es una regla de cálculo de poca utilidad C) sirve para dividir un polinomio cualquiera entre otra de la forma x - a
A) siempre es producto de dos polinomios de primer grado B) tendrá siempre dos raíces distintas C) siempre puede descomponerse en factores D) puede no tener raíces reales
A) 1 ; 2 ; 3 B) -3 ; -2 ; -1 C) 1 ; 2 ; 5 D) -2 ; -1 ; 3
A) p(2) = 0 B) -2 es raíz de p C) p(x) es divisible entre (x + 2)
A) el resto de la división de p(x) entre (x - 3) es 0 B) p(-3) = 0 C) -3 es raíz de p
A) f(x) es divisible entre (x - 7) B) f(-7) = 0 C) el valor numérico de f(x) en x = 7 es 0
A) -87 B) -39 C) 39
A) q(a) = 0 B) q(-a) = 0 C) q(0) = 0
A) 9x² – 6x + 4 B) 9x² – 12x – 4 C) 9x² – 12x + 4
A) Si no tiene una raíz entera, no sabemos descomponerlo en factores. B) Pude tener sus tres raíces imaginarias C) Como máximo puede tener tres raíces.
A) Posee como máximo tres raíces reales distintas. B) Tendrá siempre dos raíces reales distintas. C) Puede no tener raíces reales.
A) 9x² + 6x + 1 B) 9x² + 6x + 2 C) 3x² + 6x + 1 D) 9x² + 1
A) 2x (x² – 1) B) x² (x – 2) C) 2x (x – 1)
A) 9x²+1 B) 9x²-6x+1 C) 9x²-1 D) 6x²-3x+1
A) una recta B) una parabola C) una curva |