A) -1,5 ; 0 ;1,5 ;3 B) -1,5 ; 1,5 ; 3 C) no posee raíces reales D) -1,5 ; 0 ; 1,5
A) es una forma más cómoda de realizar una división B) sirve para dividir un polinomio cualquiera entre otra de la forma x - a C) es una regla de cálculo de poca utilidad
A) tendrá siempre dos raíces distintas B) siempre es producto de dos polinomios de primer grado C) puede no tener raíces reales D) siempre puede descomponerse en factores
A) 1 ; 2 ; 3 B) 1 ; 2 ; 5 C) -3 ; -2 ; -1 D) -2 ; -1 ; 3
A) p(2) = 0 B) p(x) es divisible entre (x + 2) C) -2 es raíz de p
A) -3 es raíz de p B) p(-3) = 0 C) el resto de la división de p(x) entre (x - 3) es 0
A) f(x) es divisible entre (x - 7) B) el valor numérico de f(x) en x = 7 es 0 C) f(-7) = 0
A) -87 B) -39 C) 39
A) q(a) = 0 B) q(-a) = 0 C) q(0) = 0
A) 9x² – 12x – 4 B) 9x² – 6x + 4 C) 9x² – 12x + 4
A) Si no tiene una raíz entera, no sabemos descomponerlo en factores. B) Pude tener sus tres raíces imaginarias C) Como máximo puede tener tres raíces.
A) Puede no tener raíces reales. B) Tendrá siempre dos raíces reales distintas. C) Posee como máximo tres raíces reales distintas.
A) 9x² + 6x + 1 B) 9x² + 1 C) 9x² + 6x + 2 D) 3x² + 6x + 1
A) 2x (x² – 1) B) 2x (x – 1) C) x² (x – 2) |