Matematikai rendszerelmélet
  • 1. A matematikai rendszerelmélet a matematikának egy olyan ága, amely a dinamikus rendszerek modellezésével, elemzésével és szabályozásával foglalkozik. Keretet biztosít az összetett rendszerek viselkedésének megértéséhez matematikai technikák, például differenciálegyenletek, lineáris algebra és valószínűségszámítás segítségével. A rendszerelméletet különféle területeken használják, beleértve a mérnöki tudományt, a fizikát, a biológiát, a közgazdaságtant és a társadalomtudományokat, hogy tanulmányozzák és tervezzék a dinamikus viselkedést mutató rendszereket. A rendszerelemek, valamint azok bemenetei és kimenetei közötti kölcsönhatások tanulmányozásával a rendszerelmélet lehetővé teszi, hogy előre jelezzük és ellenőrizzük e rendszerek viselkedését, ami a technológia és a tudományos megértés fejlődéséhez vezet. Mire használják a Laplace-transzformációt a matematikai rendszerelméletben?
A) Számítsa ki a mátrixok sajátértékeit!
B) Lineáris időinvariáns rendszerek dinamikájának elemzése
C) Oldja meg a parciális differenciálegyenleteket
D) Számítsa ki a görbe alatti területet
  • 2. Mi a rendszer impulzusválasza?
A) Konvolúciós tétel alkalmazása
B) A rendszer stabilitásának elemzése
C) A rendszer kimenete, ha a bemenet szinuszos függvény
D) A rendszer kimenete, ha a bemenet impulzusfüggvény
  • 3. Mit jelez egy rendszer irányíthatósága?
A) Kimeneti válasz külső zavarokra
B) Képes a rendszert bármilyen kívánt állapotba irányítani
C) A kezdeti feltételek hatása a rendszerre
D) A rendszer stabilitásának elemzése
  • 4. Mire használható a Nyquist stabilitási kritérium?
A) Állapottér reprezentáció számítása
B) Frekvenciaválasz elemzése
C) Zárt hurkú rendszer stabilitásának meghatározása
D) Differenciálegyenletek megoldása
  • 5. Mi a rendszerazonosítás elsődleges célja?
A) Rendszer matematikai modelljének meghatározása bemeneti-kimeneti adatokból
B) A vezérlő paramétereinek optimalizálása
C) Differenciálegyenletek megoldása analitikusan
D) A rendszer teljesítményének kiértékelése szimuláció segítségével
  • 6. Milyen szerepet játszik a szabályozhatósági mátrix az állapottér reprezentációban?
A) Kiszámítja a rendszer Laplace-transzformációját
B) Felméri a rendszer megfigyelhetőségét
C) Meghatározza, hogy a rendszer összes állapota vezérelhető-e
D) Megoldja a rendszer pólusait
  • 7. Mit jelent a rendszer válasza?
A) A rendszer kimeneti viselkedése a bemeneti jelekhez
B) Szabályozhatósági mátrix elemek
C) Állandósult állapot jellemzői
D) A rendszermátrix sajátértékei
  • 8. Miért részesítik előnyben az állapottér-reprezentációt a rendszerelméletben?
A) Kevesebb számítási erőforrást igényel
B) Az elemzést csak lineáris rendszerekre korlátozza
C) A rendszer összes dinamikáját kompakt formában rögzíti
D) Közvetlen átviteli függvény számítást biztosít
  • 9. Mi a pólusok elhelyezésének elsődleges célja a rendszervezérlés tervezésében?
A) Az állandósult állapotú hibák minimalizálása
B) A rendszer pólusainak helyének beállítása a kívánt teljesítmény elérése érdekében
C) Rendszerzavarok kiküszöbölése
D) A rendszer irányíthatóságának meghatározása
  • 10. Mit jelent a rendszererősítés egy vezérlőrendszerben?
A) A rendszer csillapítási aránya
B) Erősítési tényező a bemenet és a kimenet között
C) A rendszer időállandója
D) Fáziseltolás a bemeneti és kimeneti jelek között
  • 11. Mire vonatkozik a rendszer megfigyelhetőség fogalma?
A) A rendszer frekvenciatartományi viselkedése
B) Stabilitáselemzés különféle zavarok mellett
C) Képes a rendszer belső állapotát a kimeneteiből meghatározni
D) A kívánt állapotátmenetek bemeneti követelményei
Létrehozva That Quiz — matematika tesztoldal minden évfolyam diákjainak.