Tema 3 Monomis i Polinomis Opera i Simplifica
  • 1. x (x2 – 5) – 3x2 (x + 2) – 7 (x2 + 1) =
A) x2 – 5x – 7
B) –2x3 – 13x2 – 5x – 7
C) Cap de totes
D) -13x2 + 5x +7
E) 3x4 – 5x – 7
  • 2. 5x2 (–3x + 1) – x (2x – 3x2) – 2 · 3x =
A) –12x6 + 3x4 – 6x
B) Cap de totes
C) 12x3 - 3x2 + 6x
D) –12x3 + 9x2 – 6x
E) –12x3 + 3x2 – 6x
  • 3. (2x2 + 3)(x – 1) – x (x – 2) =
A) Cap de totes
B) 2x3 – 3x2 + 5x – 3
C) 2x3 – -3x2 - 5x + 3
D) 2x3 – 6x2 + 10x – 9
E) 2x3 – 3x4 + 5x2 – 3
  • 4. (x2 – 5x + 3)(x2 – x) – x(x3 – 3) =
A) –6x3 + 8x2
B) Cap de totes
C) –12x3 + 16x2
D) –1–6x6 + 8x4
E) 6x3 - 8x2
  • 5. 6x2 – 7x2 + 3x2
A) -2x2
B) 2x6
C) 2x4
D) 2x2
E) Cap de totes
  • 6. Per a sumar Monomis
A) Es poden sumar tots
B) Tenen que ser semblats
C) Sols si coincideix del coeficient
D) Sols es multipliquen
E) Mai es poden sumar
  • 7. Per a multiplicar Monomis
A) Es multipliquen els coeficients i es sumen els exponents de la part literal coinciden
B) Tenen que ser semblats
C) Sols es poden sumar
D) Es multiplquen els exponents amb coincidencia de la part literal i es sumen els coeficients
E) Mai es poden multiplicar
  • 8. Dos monomis son Semblats
A) Quan tenen identica part literal
B) Quan tenen el mateix exponent
C) Quan tenen el mateix coeficien
D) Quan tenen el mateix signe
E) Quan son inversos
  • 9. 3x2zy3 i -13y3zx2z Aquests monomis son semblats
A) Si
B) No
  • 10. 3x4zy6 i 3y3zx2z Aquests monomis son semblats
A) No
B) Si
Azok a diákok, akik elvégezték ezt a tesztet, szintén elvégezték :

Létrehozva That Quiz — matematika tesztoldal minden évfolyam diákjainak.