Tema 3 Monomis i Polinomis Opera i Simplifica
  • 1. x (x2 – 5) – 3x2 (x + 2) – 7 (x2 + 1) =
A) -13x2 + 5x +7
B) –2x3 – 13x2 – 5x – 7
C) x2 – 5x – 7
D) Cap de totes
E) 3x4 – 5x – 7
  • 2. 5x2 (–3x + 1) – x (2x – 3x2) – 2 · 3x =
A) –12x3 + 9x2 – 6x
B) –12x3 + 3x2 – 6x
C) –12x6 + 3x4 – 6x
D) 12x3 - 3x2 + 6x
E) Cap de totes
  • 3. (2x2 + 3)(x – 1) – x (x – 2) =
A) 2x3 – 6x2 + 10x – 9
B) 2x3 – 3x2 + 5x – 3
C) 2x3 – 3x4 + 5x2 – 3
D) 2x3 – -3x2 - 5x + 3
E) Cap de totes
  • 4. (x2 – 5x + 3)(x2 – x) – x(x3 – 3) =
A) –6x3 + 8x2
B) 6x3 - 8x2
C) –1–6x6 + 8x4
D) –12x3 + 16x2
E) Cap de totes
  • 5. 6x2 – 7x2 + 3x2
A) 2x6
B) Cap de totes
C) 2x4
D) -2x2
E) 2x2
  • 6. Per a sumar Monomis
A) Sols es multipliquen
B) Tenen que ser semblats
C) Sols si coincideix del coeficient
D) Mai es poden sumar
E) Es poden sumar tots
  • 7. Per a multiplicar Monomis
A) Sols es poden sumar
B) Tenen que ser semblats
C) Mai es poden multiplicar
D) Es multiplquen els exponents amb coincidencia de la part literal i es sumen els coeficients
E) Es multipliquen els coeficients i es sumen els exponents de la part literal coinciden
  • 8. Dos monomis son Semblats
A) Quan tenen el mateix signe
B) Quan son inversos
C) Quan tenen identica part literal
D) Quan tenen el mateix coeficien
E) Quan tenen el mateix exponent
  • 9. 3x2zy3 i -13y3zx2z Aquests monomis son semblats
A) No
B) Si
  • 10. 3x4zy6 i 3y3zx2z Aquests monomis son semblats
A) Si
B) No
Azok a diákok, akik elvégezték ezt a tesztet, szintén elvégezték :

Létrehozva That Quiz — matematika tesztoldal minden évfolyam diákjainak.