parbola from the equation y= ax2+bx + c or y=x2 TERMS TO KNOW vertex line of symmetry roots,zeros 2 -2 4 -4 6 -6 2 -2 4 -4 6 -6 8 -8 10 -10 hi/lo point of parabola vertex 2 -2 4 -4 6 -6 2 -2 4 -4 6 -6 8 -8 10 -10 line of symmetry same on both sidesmirrorgoes thru vertex line of symmetry 2 -2 4 -4 6 -6 2 -2 4 -4 6 -6 8 -8 10 -10 zero--root--> x-intercepts-->y=0 zero zero may have none one two (x,0) 2 -2 4 -4 6 -6 2 -2 4 -4 6 -6 8 -8 10 -10 parabola curved line graph- comes from the equation--y=x2 opens UP if coefficientof x2 is positive 2 -2 4 -4 6 -6 2 -2 4 -4 6 -6 8 -8 10 -10 parabola -opens DOWN if coefficient of x2 is negative zero vertex zero line of symmetry 2 -2 4 -4 6 -6 2 -2 4 -4 6 -6 8 -8 10 -10 vertex the lowest or highest point 2 -2 4 -4 6 -6 2 -2 4 -4 6 -6 8 -8 10 -10 line of symmetry same on both sides x=0 2 -2 4 -4 6 -6 2 -2 4 -4 6 -6 8 -8 10 -10 zeros roots place where parabola crosses the x-axis or x-intercepts y=0 zeros 2 -2 4 -4 6 -6 2 -2 4 -4 6 -6 8 -8 10 -10 line of symmetry-- mirror x= zero=( , ) vertex=( zero=( , ) , ) parabola opens down because coeffiecient of x2 is negative y= -1x2-3x-3 vertex y= -1x2-3x-3 (-3,0) parabola opens down zero zero (-1,0) 2 -2 4 -4 6 -6 2 -2 4 -4 6 -6 8 -8 10 -10 y= -1x2-3x-3 x=-2 line of symmetry or mirror |