A) -1,5 ; 0 ;1,5 ;3 B) -1,5 ; 1,5 ; 3 C) -1,5 ; 0 ; 1,5 D) no posee raíces reales
A) es una forma más cómoda de realizar una división B) es una regla de cálculo de poca utilidad C) sirve para dividir un polinomio cualquiera entre otra de la forma x - a
A) siempre puede descomponerse en factores B) siempre es producto de dos polinomios de primer grado C) puede no tener raíces reales D) tendrá siempre dos raíces distintas
A) 1 ; 2 ; 5 B) -3 ; -2 ; -1 C) -2 ; -1 ; 3 D) 1 ; 2 ; 3
A) -2 es raíz de p B) p(x) es divisible entre (x + 2) C) p(2) = 0
A) p(-3) = 0 B) -3 es raíz de p C) el resto de la división de p(x) entre (x - 3) es 0
A) f(-7) = 0 B) f(x) es divisible entre (x - 7) C) el valor numérico de f(x) en x = 7 es 0
A) 39 B) -87 C) -39
A) q(0) = 0 B) q(a) = 0 C) q(-a) = 0
A) 9x² – 6x + 4 B) 9x² – 12x – 4 C) 9x² – 12x + 4
A) Pude tener sus tres raíces imaginarias B) Como máximo puede tener tres raíces. C) Si no tiene una raíz entera, no sabemos descomponerlo en factores.
A) Posee como máximo tres raíces reales distintas. B) Puede no tener raíces reales. C) Tendrá siempre dos raíces reales distintas.
A) 9x² + 6x + 2 B) 3x² + 6x + 1 C) 9x² + 1 D) 9x² + 6x + 1
A) 2x (x – 1) B) x² (x – 2) C) 2x (x² – 1)
A) 9x²+1 B) 9x²-1 C) 9x²-6x+1 D) 6x²-3x+1
A) una recta B) una curva C) una parabola |