A) -1,5 ; 0 ; 1,5 B) no posee raíces reales C) -1,5 ; 0 ;1,5 ;3 D) -1,5 ; 1,5 ; 3
A) es una regla de cálculo de poca utilidad B) es una forma más cómoda de realizar una división C) sirve para dividir un polinomio cualquiera entre otra de la forma x - a
A) siempre puede descomponerse en factores B) puede no tener raíces reales C) siempre es producto de dos polinomios de primer grado D) tendrá siempre dos raíces distintas
A) -2 ; -1 ; 3 B) -3 ; -2 ; -1 C) 1 ; 2 ; 5 D) 1 ; 2 ; 3
A) p(x) es divisible entre (x + 2) B) -2 es raíz de p C) p(2) = 0
A) p(-3) = 0 B) -3 es raíz de p C) el resto de la división de p(x) entre (x - 3) es 0
A) el valor numérico de f(x) en x = 7 es 0 B) f(-7) = 0 C) f(x) es divisible entre (x - 7)
A) -39 B) 39 C) -87
A) q(-a) = 0 B) q(0) = 0 C) q(a) = 0
A) 9x² – 12x – 4 B) 9x² – 6x + 4 C) 9x² – 12x + 4
A) Como máximo puede tener tres raíces. B) Pude tener sus tres raíces imaginarias C) Si no tiene una raíz entera, no sabemos descomponerlo en factores.
A) Puede no tener raíces reales. B) Tendrá siempre dos raíces reales distintas. C) Posee como máximo tres raíces reales distintas.
A) 9x² + 6x + 1 B) 9x² + 6x + 2 C) 3x² + 6x + 1 D) 9x² + 1
A) x² (x – 2) B) 2x (x² – 1) C) 2x (x – 1) |