ThatQuiz Elenco di test Affronta questo test adesso
Tema 3 Monomis i Polinomis Opera i Simplifica
Con il contributo di: Galvis Bellés
  • 1. x (x2 – 5) – 3x2 (x + 2) – 7 (x2 + 1) =
A) -13x2 + 5x +7
B) x2 – 5x – 7
C) –2x3 – 13x2 – 5x – 7
D) Cap de totes
E) 3x4 – 5x – 7
  • 2. 5x2 (–3x + 1) – x (2x – 3x2) – 2 · 3x =
A) –12x6 + 3x4 – 6x
B) 12x3 - 3x2 + 6x
C) Cap de totes
D) –12x3 + 3x2 – 6x
E) –12x3 + 9x2 – 6x
  • 3. (2x2 + 3)(x – 1) – x (x – 2) =
A) 2x3 – 6x2 + 10x – 9
B) 2x3 – -3x2 - 5x + 3
C) Cap de totes
D) 2x3 – 3x4 + 5x2 – 3
E) 2x3 – 3x2 + 5x – 3
  • 4. (x2 – 5x + 3)(x2 – x) – x(x3 – 3) =
A) 6x3 - 8x2
B) –12x3 + 16x2
C) Cap de totes
D) –6x3 + 8x2
E) –1–6x6 + 8x4
  • 5. 6x2 – 7x2 + 3x2
A) 2x2
B) Cap de totes
C) 2x4
D) -2x2
E) 2x6
  • 6. Per a sumar Monomis
A) Mai es poden sumar
B) Tenen que ser semblats
C) Sols si coincideix del coeficient
D) Sols es multipliquen
E) Es poden sumar tots
  • 7. Per a multiplicar Monomis
A) Es multipliquen els coeficients i es sumen els exponents de la part literal coinciden
B) Mai es poden multiplicar
C) Sols es poden sumar
D) Es multiplquen els exponents amb coincidencia de la part literal i es sumen els coeficients
E) Tenen que ser semblats
  • 8. Dos monomis son Semblats
A) Quan son inversos
B) Quan tenen el mateix exponent
C) Quan tenen el mateix signe
D) Quan tenen identica part literal
E) Quan tenen el mateix coeficien
  • 9. 3x2zy3 i -13y3zx2z Aquests monomis son semblats
A) No
B) Si
  • 10. 3x4zy6 i 3y3zx2z Aquests monomis son semblats
A) No
B) Si
Studenti hanno provato anche :

Creato con That Quiz — un sito di test di matematica per studenti di tutti i livelli.