ThatQuiz Biblioteka Testów Podejdź teraz do testu
Power Functions - Dividing Functions
Opracowany przez: Potter
g(x) ÷ h(x) =         x       =         x       =         x                       3x2 + 4x      x(3x + 4)      x(3x + 4)
g(x) ÷ h(x) =       1                      3x + 4
Enter the answer below to practice entering answers.
There is a box for the coefficient, variable, and power.
These points will count toward your score.
When we divide functions we will need simplify when
possible.
Answer:
Dividing functions to get a power function
Example:
+
x on top cancels
with x on bottom
When we divide functions we will need simplify when
possible.
Answer:
Dividing functions to get a power function
factor the denominatorthen simplify just like theexample
When we divide functions we will need simplify when
possible.
Answer:
Dividing functions to get a power function
-
factor the denominator
then simplify
When we divide functions we will need simplify when
possible.
Answer:
Dividing functions to get a power function
simplify the powers
When we divide functions we will need simplify when
possible.
Answer:
Dividing functions to get a power function
-
-
you will like this one :)
Uczniowie wykonujący ten test biorą również :

Test utworzony z That Quiz — tu znajdziesz testy matematyczne dla uczniów na różnym poziomie.