Logaritmos
  • 1. La expresión exponencial 93= 729 es equivalente a:
A) 4 = log3 729
B) 3 = log9 729
C) 3 = log729 9
D) 729 = log9 3
E) 9 = log729 3
  • 2. La expresión logarítmica de la imagen adjunta, es equivalente a
A) ca=b
B) ba=c
C) bc=a
D) ac=b
E) ab=c
  • 3. En la expresión log2 128, el logaritmo es:
A) 64
B) 2128
C) 7
D) √128
E) 72
  • 4. En la expresión logarítmica adjunta, el logaritmo es:
A) √(1/2)
B) - 2
C) √2
D) 1/2
E) 2
  • 5. En la expresión logarítmica adjunta, el logaritmo es:
A) 0,7
B) - 2
C) -7
D) 7
E) 2
  • 6. El valor del logaritmo log9 27 es igual a:
A) 2/3
B) -3/2
C) 3
D) 3/2
E) -3
  • 7. En log (1/100) el valor del logaritmo es:
A) -10
B) 10
C) 1/2
D) -2
E) 2
  • 8. En la expresión log8 64 el valor del logaritmo es:
A) 1/8
B) 8
C) -8
D) -2
E) 2
  • 9. En log5 (1/125) el valor del logaritmo es:
A) 3
B) 1/25
C) -3
D) 1/3
E) -25
  • 10. En la expresión logarítmica adjunta el valor del logaritmo es:
A) -6
B) -128
C) 6
D) 128
E) 32
  • 11. La expresión log2 32 + log 100 - log3 27 es equivalente a:
A) 4
B) 17
C) -10
D) -4
E) 10
  • 12. En log3 (1/9) el valor del logaritmo es:
A) 3
B) -3
C) 1/3
D) -2
E) 2
  • 13. En la expresión logarítmica log16 2=x, el valor de x es:
A) 3
B) -4
C) 1/3
D) 4
E) 1/4
  • 14. En log27 (1/3) el valor del logaritmo es:
A) 1
B) -1
C) 1/3
D) (-1/3)
E) 3
  • 15. El valor de x en la expresión log2 x = 6 es:
A) 3
B) 32
C) 64
D) 36
E) 12
  • 16. En la expresión logarítmica adjunta el valor de x es:
A) (-6/8)
B) (-9/16)
C) (-11/9)
D) 16/9
E) 9/16
  • 17. En log32 (1/2) el valor del logaritmo es:
A) (-1/5)
B) -5
C) 16
D) 1/5
E) 5
  • 18. Al escribir como un solo logaritmo log6+log4-log3 =
A) log (4/3)
B) log 8
C) log 24
D) log (6/4)
  • 19. Al escribir 73 = 343 en forma logarítmica, tenemos:
A) log3 7 = 343
B) log3 343 = 7
C) log7 3 = 343
D) log7 343 =3
  • 20. Escribiendo en forma exponencial log5 125 = 3 , tendremos:
A) 1253 = 5
B) 1255 = 3
C) 53= 125
D) 35= 125
  • 21. Al calcular aplicando propiedades en log2 [(32x64)/128] , tenemos:
A) 4
B) 5
C) 6
D) 7
  • 22. Al cambiar a base dos y calcular log8 16 , el resultado es 2.
A) Verdadero
B) Falso
  • 23. Aplicando propiedades calcular : log3 (729x81) =
A) 6
B) 4
C) 3
D) 10
  • 24. Al expresar el log (8 * 3) mediante el uso de las propiedades la solución es:
A) log 21
B) log 8 + log 3
C) log 8 + log 13
D) 8 log 13
  • 25. Al expresar el log (14/3) mediante el uso de las propiedades la solución es:
A) log 14 - log 3
B) 3 log 14
C) log 14 / log 3
D) log 14 / log 3
Alunos que fizeram este teste também fizeram :

Criado com That Quiz — a página para criar testes de Matemática.