Funciones polinómicas
  • 1. Las raíces de la función polinómica f cuya expresión es f(x) = 12x³ - 27x son:
A) no posee raíces reales
B) -1,5 ; 1,5 ; 3
C) -1,5 ; 0 ;1,5 ;3
D) -1,5 ; 0 ; 1,5
  • 2. La regla de Ruffini
A) sirve para dividir un polinomio cualquiera entre otra de la forma x - a
B) es una regla de cálculo de poca utilidad
C) es una forma más cómoda de realizar una división
  • 3. Una función polinómica de segundo grado
A) puede no tener raíces reales
B) tendrá siempre dos raíces distintas
C) siempre puede descomponerse en factores
D) siempre es producto de dos polinomios de primer grado
  • 4. Las raíces de la función polinómica f cuya expresión es f(x) = x³ - 7x - 6 son:
A) -3 ; -2 ; -1
B) -2 ; -1 ; 3
C) 1 ; 2 ; 5
D) 1 ; 2 ; 3
  • 5. Si el valor numérico de p(x) en x = 2 es cero, entonces:
A) p(x) es divisible entre (x + 2)
B) p(2) = 0
C) -2 es raíz de p
  • 6. Si el valor numérico de p(x) en x = 3 es cero, entonces: x – 2 es divisor de p(x) p(2) = 0 p(x) es divisible entre x + 2 El resto de la división p(x) : x – 2 es cero.
A) -3 es raíz de p
B) el resto de la división de p(x) entre (x - 3) es 0
C) p(-3) = 0
  • 7. Si -7 es raíz de f entonces
A) f(-7) = 0
B) el valor numérico de f(x) en x = 7 es 0
C) f(x) es divisible entre (x - 7)
  • 8. El valor numérico de p(x) = 2x³ – 3x² + 5x – 1 en x = – 2 es:
A) 39
B) -87
C) -39
  • 9. Si al dividir q(x) entre x + a, se obtiene resto cero:
A) q(a) = 0
B) q(0) = 0
C) q(-a) = 0
  • 10. El resultado de (3x – 2 )² es: 9x2 – 6x + 4 9x2 – 12x – 4 9x2 – 12x + 4
A) 9x² – 12x – 4
B) 9x² – 12x + 4
C) 9x² – 6x + 4
  • 11. Una función polinomica de tercer grado:
A) Pude tener sus tres raíces imaginarias
B) Como máximo puede tener tres raíces.
C) Si no tiene una raíz entera, no sabemos descomponerlo en factores.
  • 12. Una función polinómica de segundo grado:
A) Puede no tener raíces reales.
B) Posee como máximo tres raíces reales distintas.
C) Tendrá siempre dos raíces reales distintas.
  • 13. El resultado de calcular (3x + 1)² es:
A) 9x² + 6x + 1
B) 3x² + 6x + 1
C) 9x² + 6x + 2
D) 9x² + 1
  • 14. La descomposición en factores de x³ – 2x² es: 2x (x2 – 1) x2 (x – 2) x (x2 – 2x) 2x (x – 1)
A) x² (x – 2)
B) 2x (x² – 1)
C) 2x (x – 1)
Alunos que fizeram este teste também fizeram :

Criado com That Quiz — onde podemos encontrar exercícios de matemática e de outras disciplinas.