A) -1,5 ; 0 ;1,5 ;3 B) no posee raíces reales C) -1,5 ; 1,5 ; 3 D) -1,5 ; 0 ; 1,5
A) es una forma más cómoda de realizar una división B) es una regla de cálculo de poca utilidad C) sirve para dividir un polinomio cualquiera entre otra de la forma x - a
A) siempre es producto de dos polinomios de primer grado B) puede no tener raíces reales C) siempre puede descomponerse en factores D) tendrá siempre dos raíces distintas
A) 1 ; 2 ; 3 B) 1 ; 2 ; 5 C) -2 ; -1 ; 3 D) -3 ; -2 ; -1
A) p(2) = 0 B) p(x) es divisible entre (x + 2) C) -2 es raíz de p
A) el resto de la división de p(x) entre (x - 3) es 0 B) p(-3) = 0 C) -3 es raíz de p
A) f(x) es divisible entre (x - 7) B) el valor numérico de f(x) en x = 7 es 0 C) f(-7) = 0
A) -39 B) 39 C) -87
A) q(0) = 0 B) q(-a) = 0 C) q(a) = 0
A) 9x² – 12x – 4 B) 9x² – 12x + 4 C) 9x² – 6x + 4
A) Como máximo puede tener tres raíces. B) Pude tener sus tres raíces imaginarias C) Si no tiene una raíz entera, no sabemos descomponerlo en factores.
A) Tendrá siempre dos raíces reales distintas. B) Posee como máximo tres raíces reales distintas. C) Puede no tener raíces reales.
A) 9x² + 1 B) 9x² + 6x + 2 C) 3x² + 6x + 1 D) 9x² + 6x + 1
A) 2x (x – 1) B) x² (x – 2) C) 2x (x² – 1)
A) 9x²+1 B) 9x²-1 C) 6x²-3x+1 D) 9x²-6x+1
A) una curva B) una parabola C) una recta |