Intro to Solving Systems of Equations using Substitution

Solving

Using Substitution

where the lines intersect.  So the solution could bewhich of the following?
A solution to a system of equations is
A single point (one ordered pair)
No solution (parallel lines; they don't intersect)
Infinite # of Solutions (same line)
all of the above
Solve by substitution.  Fill in the blanks.
So, the solution is 
{
2x + 3y = 21
x = 9
(
18 -        + 3y = 21 - 
2           + 3y = 21   
(
,
18
?
18
?
    + 3y = 21
)
)
3y = 
y = 
18
?
     + 3y = 21
Solve by substitution.  Fill in the blanks.
So, the solution is 
{
y = 10
y = 4x + 2
(
                = 4x + 2  
10-        = 4x + 2 - 
,
2
?
)
= 4x
= x
2
?
Solve the system.
{

2x - y = 1

y = 10
Answer:
(
,
)
Solve the system.
{

4x -2y = 10

x = 4

Answer:
(
,
)
Učenci, ki so rešili ta test so rešili tudi :

Ustvarjeno z That Quiz — stran z matematičnimi testi za učence za vse stopnje.