- 1. 1. Convert [[1264]]_8 to base ten
A) 692 B) 629 C) 171 D) 117
- 2. 2. Convert [[211]]_3 to base eight
A) 7 B) 62 C) 26 D) 11
- 3. 3. Convert 1.101 to decimal
A) 1.625 B) 0.25 C) 0.625 D) 0.125
- 4. 4. In what base is the addition 465 + 24 + 225 = 1050?
A) 5 B) 6 C) 9 D) 7
- 5. 5. Calculate [[212]]_3 x [[201]]_3 giving your answer as a number in base three
A) 121012 B) 113021 C) 10152 D) 11512
- 6. 6. Evaluate 11110 ÷ 110
A) 101 B) 1100 C) 110 D) 1011
- 7. 7. If [[34]]_5= 23_x, find x.
A) x = -16 B) x = 8 C) x = -8 D) x = 16
- 8. 8. Simplify 0.0589 + 7.382 - 0.7953 correct to 2 decimal places.
A) 8.24 B) 6.64 C) 8.20 D) 6.65
- 9. 9. Evaluate 6 - 36( mod 9)
A) 6 B) 0 C) 3 D) 5
- 10. 10. Evaluate 27 x (20 x 3-2)/ 4-½
A) 12 B) ⅓ C) 48 D) 6
- 11. 11. Simplify 125-2/3 x 15
A) 13 B) ⅗ C) ⅚ D) ⅔
- 12. 12. Evaluate (3.69 x 105) ÷ (1.64 x 10-3)
A) 2.25 x 10-8 B) 2.25 x 10-2 C) 2.25x 102 D) 2.25 x 108
- 13. 13. Express the sum of 6.03 x 106 and 2.17 x 105 in standard form.
A) 624.7 x 1011 B) 6.247 x 106 C) 6.247 x 1011 D) 62.47 x 106
- 14. 14. Simplify (1/16)-¾ + 5 (90)
A) 3½ B) 2/3 C) 13 D) 7/25
- 15. 15. Evaluate 2 ÷ (64/125)-⅔
A) 5 ⅚ B) 3 ½ C) 2 ⅛ D) 1 ⁷/25
- 16. 16. Simplify 125⅓ x 49½ x 10-1
A) 35/5 B) 3 ½ C) 2 ⅓ D) 6 ⅞
- 17. 17. Given that 102 = 100, write the expression in logarithmic form
A) 2 = log10 100 B) 100 = log10 2 C) 3 = log10 100 D) 1 = log10 102
- 18. 18. Simplify [[log]]_3 54 + [[log]]_3 15 - [[log]]_3 10
A) 4 B) 5.9 C) 12 D) 49
- 19. 19. Evaluate [[log]]_10 45 + [[log]]_10 9-1 - [[log]]_10 2-1 without using table
A) 1 B) 2 C) 10 D) 5
- 20. 20. Simplify [[log]]_10 √1000
A) 10 B) ⅔ C) ½ D) 1½
|