- 1. 1. Convert [[1264]]_8 to base ten
A) 629 B) 171 C) 692 D) 117
- 2. 2. Convert [[211]]_3 to base eight
A) 26 B) 11 C) 7 D) 62
- 3. 3. Convert 1.101 to decimal
A) 0.125 B) 1.625 C) 0.625 D) 0.25
- 4. 4. In what base is the addition 465 + 24 + 225 = 1050?
A) 5 B) 6 C) 9 D) 7
- 5. 5. Calculate [[212]]_3 x [[201]]_3 giving your answer as a number in base three
A) 10152 B) 11512 C) 113021 D) 121012
- 6. 6. Evaluate 11110 ÷ 110
A) 110 B) 1100 C) 101 D) 1011
- 7. 7. If [[34]]_5= 23_x, find x.
A) x = -16 B) x = -8 C) x = 16 D) x = 8
- 8. 8. Simplify 0.0589 + 7.382 - 0.7953 correct to 2 decimal places.
A) 6.65 B) 8.24 C) 8.20 D) 6.64
- 9. 9. Evaluate 6 - 36( mod 9)
A) 3 B) 6 C) 0 D) 5
- 10. 10. Evaluate 27 x (20 x 3-2)/ 4-½
A) 48 B) 6 C) ⅓ D) 12
- 11. 11. Simplify 125-2/3 x 15
A) ⅔ B) ⅗ C) 13 D) ⅚
- 12. 12. Evaluate (3.69 x 105) ÷ (1.64 x 10-3)
A) 2.25 x 10-8 B) 2.25 x 10-2 C) 2.25x 102 D) 2.25 x 108
- 13. 13. Express the sum of 6.03 x 106 and 2.17 x 105 in standard form.
A) 62.47 x 106 B) 6.247 x 1011 C) 624.7 x 1011 D) 6.247 x 106
- 14. 14. Simplify (1/16)-¾ + 5 (90)
A) 7/25 B) 13 C) 3½ D) 2/3
- 15. 15. Evaluate 2 ÷ (64/125)-⅔
A) 1 ⁷/25 B) 2 ⅛ C) 3 ½ D) 5 ⅚
- 16. 16. Simplify 125⅓ x 49½ x 10-1
A) 35/5 B) 3 ½ C) 6 ⅞ D) 2 ⅓
- 17. 17. Given that 102 = 100, write the expression in logarithmic form
A) 3 = log10 100 B) 1 = log10 102 C) 100 = log10 2 D) 2 = log10 100
- 18. 18. Simplify [[log]]_3 54 + [[log]]_3 15 - [[log]]_3 10
A) 4 B) 12 C) 5.9 D) 49
- 19. 19. Evaluate [[log]]_10 45 + [[log]]_10 9-1 - [[log]]_10 2-1 without using table
A) 1 B) 2 C) 5 D) 10
- 20. 20. Simplify [[log]]_10 √1000
A) 1½ B) 10 C) ⅔ D) ½
|