A) -1,5 ; 0 ; 1,5 B) no posee raíces reales C) -1,5 ; 1,5 ; 3 D) -1,5 ; 0 ;1,5 ;3
A) es una forma más cómoda de realizar una división B) sirve para dividir un polinomio cualquiera entre otra de la forma x - a C) es una regla de cálculo de poca utilidad
A) siempre puede descomponerse en factores B) puede no tener raíces reales C) tendrá siempre dos raíces distintas D) siempre es producto de dos polinomios de primer grado
A) -2 ; -1 ; 3 B) 1 ; 2 ; 3 C) 1 ; 2 ; 5 D) -3 ; -2 ; -1
A) p(2) = 0 B) p(x) es divisible entre (x + 2) C) -2 es raíz de p
A) p(-3) = 0 B) el resto de la división de p(x) entre (x - 3) es 0 C) -3 es raíz de p
A) f(x) es divisible entre (x - 7) B) f(-7) = 0 C) el valor numérico de f(x) en x = 7 es 0
A) -39 B) -87 C) 39
A) q(0) = 0 B) q(a) = 0 C) q(-a) = 0
A) 9x² – 12x + 4 B) 9x² – 12x – 4 C) 9x² – 6x + 4
A) Pude tener sus tres raíces imaginarias B) Si no tiene una raíz entera, no sabemos descomponerlo en factores. C) Como máximo puede tener tres raíces.
A) Tendrá siempre dos raíces reales distintas. B) Posee como máximo tres raíces reales distintas. C) Puede no tener raíces reales.
A) 3x² + 6x + 1 B) 9x² + 6x + 2 C) 9x² + 1 D) 9x² + 6x + 1
A) x² (x – 2) B) 2x (x² – 1) C) 2x (x – 1) |