- 1. 1. Convert [[1264]]_8 to base ten
A) 629 B) 171 C) 117 D) 692
- 2. 2. Convert [[211]]_3 to base eight
A) 26 B) 62 C) 7 D) 11
- 3. 3. In what base is the addition 465 + 24 + 225 = 1050?
A) 6 B) 9 C) 5 D) 7
- 4. 4. Evaluate 11110 ÷ 110
A) 1011 B) 101 C) 110 D) 1100
- 5. 5. Simplify 0.0589 + 7.382 - 0.7953 correct to 2 decimal places.
A) 6.64 B) 8.20 C) 6.65 D) 8.24
- 6. 6. Simplify 125-2/3 x 15
A) 13 B) ⅗ C) ⅚ D) ⅔
- 7. 7. Evaluate (3.69 x 105) ÷ (1.64 x 10-3)
A) 2.25x 102 B) 2.25 x 10-8 C) 2.25 x 108 D) 2.25 x 10-2
- 8. 8. Express the sum of 6.03 x 106 and 2.17 x 105 in standard form.
A) 624.7 x 1011 B) 6.247 x 106 C) 6.247 x 1011 D) 62.47 x 106
- 9. 9. Simplify (1/16)-¾ + 5 (90)
A) 2/3 B) 7/25 C) 13 D) 3½
- 10. 10. Evaluate 2 ÷ (64/125)-⅔
A) 2 ⅛ B) 5 ⅚ C) 1 ⁷/25 D) 3 ½
- 11. 11. Simplify 125⅓ x 49½ x 10-1
A) 6 ⅞ B) 2 ⅓ C) 35/5 D) 3 ½
- 12. 12. Evaluate [[log]]_10 45 + [[log]]_10 9-1 - [[log]]_10 2-1 without using table
A) 5 B) 1 C) 2 D) 10
- 13. 13. Evaluate [[110100]]_2 ÷[[100]]_2
A) [[1111]]_2 B) [[1001]]_2 C) [[1101]]_2 D) [[1010]]_2
- 14. 14. Approximate 65009.269 to 1 significant figure.
A) 70000.000 B) 65010.000 C) 650009.270 D) 65009.300
- 15. 15. Express the number 0.0099687 correct to four decimal places
A) 0.0010 B) 0.0090 C) 0.0100 D) 0.0099
- 16. 16. Solve [[log]]_3 (2x + 1) - [[log]]_3 (x - 3) = 2
A) 3½ B) 2 C) 8 D) 4
- 17. 17. Simplify log 27/ log 9
A) log 3/2 B) 2 C) 3/4 D) 1½
- 18. 18. Evaluate [[log]]_10 (⅓ + ¼) + 2 [[log]]_10 2 +[[log]]_10 (3/7)
A) 1 B) 0 C) -3 D) ⅚
- 19. 19. Evaluate without using calculator, [[log]]_10 √30 - [[log]]_10 √6 + [[log]]_10 √2
A) -3 B) ½ C) 1 D) 3/2
- 20. 20. Evaluate ([[203]]_4)2
A) 2030 B) 12002 C) 103021 D) 10012
|