● Parent Functions ◌ Piecewise Functions ◌ Transforming functions Click then drag the equation by the description. Absolute value function Constant function Cubic function Cube root function Exponential function Greatest Integer function Identity function log base b function Quadratic function Reciprocal function Square root function y=logb(x) ? y=[x] or y=int(x,1) ? y=|x| ? y=x3 ? y=∛x ? y=bx ? y=1 ? y=√x ? y=1/x ? y=x2 ? y=x ? f(x) x -2 0 2 Equation: Domain: xε Range: f(x) ε Parent Function f(x) = (-∞,∞) ? {1} ? f(x) x -1 0 1 Equation: Domain: xε Range: a.k.a. Identity function ? Parent Function f(x) = {f(x) εℛ } ? (-∞,∞) ? f(x) x -2 -1 0 1 2 Equation: Domain: xε Range: f(x) ε a.k.a. Square function ? parent function f(x) = (-∞,∞) ? [0,∞) ? f(x) x -1 -1 ? -⅛ ? -½ 0 0 ? ⅛ ? ½ 1 1 ? 8 ? 2 Equation: Domain: Range: parent function f(x) = f(x) ε (-∞,∞) ? x ε (-∞,∞) ? f(x) x -4 4 ? -2 2 ? 0 0 ? 1 ? 1 3 3 ? 5 ? 5 parent function Equation: Domain: xε Range: f(x) ε f(x) = { f(x) = -x, x, (-∞,∞) ? [0,∞) ? x<0 ? x≥0 ? f(x) x -2.5 -3 ? -1 -1 ? 0 ? 0 1.8 1 ? 3 ? 3 Eq: parent function Domain: xε Range: f(x) ε Rounds up Rounds down a.k.a. Greatest Integer Function ? f(x) = {...,-2,-1,0,1,2,...} ? int(x,1) ? (-∞,∞) ? Open excel and look up the Ceiling function and enter its description below: Open excel and look up the FLOOR function and enter its description below: The greatest integer function returns the greatest integer less than or equal to the argument. The smallest integer function returns the smallest integer greater than the argument. f(x) x 0 1 4 9 Domain: xε Range: Equation: a.k.a. f(x)= The inverse of x2 . f(x) ε [0,∞) ? f(x) = [0,∞) ? SQRT(X) ? parent function √x ? f(x) x -1 -1 ? -½ -⅛ ? 0 ? 0 ⅛ ? ½ 1 ? 1 8 ? 2 Equation: Domain: xε Range: parent function a.k.a. f(x)= The inverse of x3. f(x) = f(x) ε (-∞,∞) ? (-∞,∞) ? x1/3 ? ∛x ? Copy the key press sequence to graph f(x)=∛x. f(x) x -⅓ ? -3 -½ ? -2 -1 ? -1 d.n.e. ? 0 1 ? 1 ½ ? 2 ⅓ ? 3 Equation: Domain: Range: a.k.a. f(x) = The inverse of x. d.n.e = parent function does not exist. ? {xε ℛ, x≠1} ? f(x) = {y∊ℛ, y≠0} ? x-1 ? 1/x ? ◌ Parent Functions ● Piecewise Functions ◌ Transforming functions Enter these equations to graph the peicewise function of 4 peices. Press GRAPH. Type code given to you by your teacher. The cieling function rounds up to the nearest integer away from zero. ? CIELING(x,1) =↱x↰ The floor function rounds down to the nearest integer toward zero. ? f(x) = int(x) = FLOOR(x,1) =↳x↲ { ceiling(x)=↱x↰ ? floor(x) =↳x↲ ? x≥0 x<0 ◌ Parent Functions ◌ Piecewise Functions ● Transforming functions Write the transformations made to f(x) to obtain g(x). translation, shift, to the right by units. reflection over the x-axis indicated by translation, shift, up by units. vertical dilation by a factor of 6 ? 2 ? 7 ? " - " ? Write the transformations made to f(x) to obtain g(x). translation to the left by units. reflection over the x-axis indicated by translation down by units. vertical dilation by a factor of 9 ? 7 ? 2 ? " - " ? |