My Behavior, My Destiny 2023
STRATEGIC INTERVENTION MATERIAL               IN MATHEMATICS 10
Least Learned Competency:The graph of a polynomial function

My Behaviour, My Destiny.

DUJALI NATIONAL HIGH SCHOOL
MARVIN VICENTE ORETA

LEAST MASTERED COMPETENCY

FOCUS SKILLS: THE GRAPH OF POLYNOMIAL FUNCTIONS

SUPPORT SKILLS:

I. ILLUSTRATE A POLYNOMIAL FUNCTION

II. DETERMINE THE INTERCEPTS AND PLOT THE POINTS

III. GRAPH A POLYNOMIAL FUNCTION

TO THE STUDENTS

This learning package is intended to supplement your

classroom learning while working independently .

 The activities and exercises will widen your

understanding of the different

concepts you should learn.

OBJECTIVE: DEFINE A POLYNOMIAL FUNCTION

OBJECTIVE: DEFINE A POLYNOMIAL FUNCTION

A LEADING TERM is the term with the highest exponent.

A LEADING COEFFICIENT is the coefficient of the term with the highest degree.


A LEADING TERM is the term with the highest exponent.

A LEADING COEFFICIENT is the coefficient of the term with the highest degree.


The DEGREE is the greatest exponent of a polynomial .


The Constant is a term with 0 as exponent

A LEADING TERM is the term with the highest exponent.

For example, the polynomial  function

f(x) = -2x4 + x3 – 5x2 – 10


For example, the polynomial  function

f(x) = -2x4 + x3 – 5x2 – 10

Leading term:     -2x4  



For example, the polynomial  function

f(x) = -2x4 + x3 – 5x2 – 10

Leading term:     -2x4  

Leading coefficient:  -2



For example, the polynomial  function

f(x) = -2x4 + x3 – 5x2 – 10

Leading term:     -2x4  

Leading coefficient:  -2

Degree:    4


For example, the polynomial  function

f(x) = -2x4 + x3 – 5x2 – 10

Leading term:     -2x4  

Leading coefficient:  -2

Degree:    4

Constant:  -10.



For example, the polynomial  function

f(x) = -2x4 + x3 – 5x2 – 10

Leading term:     -2x4  

Leading coefficient:  -2

Degree:    4

Constant:  -10.


What is the degree, leading coefficient  and constant of 

P(x)=3x5 – 3x + 2 ?


For example, the polynomial  function

f(x) = -2x4 + x3 – 5x2 – 10

Leading term:     -2x4  

Leading coefficient:  -2

Degree:    4

Constant:  -10.


What is the degree, leading coefficient  and constant of 

P(x)=3x5 – 3x + 2 ?


Leading term:                                  Constant: 


Leading coefficient:                         Degree:    



3x5
?
3
?
2
?
5
?

Polynomial function  f (x) = x3 +3x2x –3

Polynomial function  f (x) = x3 +3x2x –3

f (x) = x3 +3x2x -3

Factors:

(x + 3) (x + 1) (x – 1) = 0


Polynomial function  f (x) = x3 +3x2x –3

f (x) = x3 +3x2x – 3

Factors:

(x + 3) (x + 1) (x – 1) = 0

Solve for x:


Polynomial function  f (x) = x3 +3x2x –3

f (x) = x3 +3x2x – 3

Factors:

(x + 3) (x + 1) (x – 1) = 0

Solve for x:

x+3=0    x+1=0    x-1=0

x = -3     x = -1    x = 1        

 


Polynomial function  f (x) = x3 +3x2x –3

f (x) = x3 +3x2x – 3

Factors:

(x + 3) (x + 1) (x – 1) = 0

Solve for x:

x+3=0    x+1=0    x-1=0

x = -3     x = -1    x = 1        

 

X INTERCEPTS(refer to the factors):  -3,  -1,  1



Polynomial function  f (x) = x3 +3x2x –3

f (x) = x3 +3x2x – 3

Factors:

(x + 3) (x + 1) (x – 1) = 0

Solve for x:

x+3=0    x+1=0    x-1=0

x = -3     x = -1    x = 1        

 

X INTERCEPTS(refer to the factors):  -3,  -1,  1


Y INTERCEPT (refer to the constant): -3

Polynomial function  f (x) = x3 +3x2x –3

f (x) = x3 +3x2x – 3

Factors:

(x + 3) (x + 1) (x – 1) = 0

Solve for x:

x+3=0    x+1=0    x-1=0

x = -3     x = -1    x = 1        

 

X INTERCEPTS(refer to the factors):  -3,  -1,  1


Y INTERCEPT (refer to the constant): -3

Polynomial function  f (x) = x3 +3x2x –3

f (x) = x3 +3x2x – 3

Factors:

(x + 3) (x + 1) (x – 1) = 0

Solve for x:

x+3=0    x+1=0    x-1=0

x = -3     x = -1    x = 1        

 

X INTERCEPTS(refer to the factors):  -3,  -1,  1


Y INTERCEPT (refer to the constant): -3

(-3, 0)
-3
-2
-1
-1
-3
3
-2
2
1
-4
1
2
3
(-3, 0)
(-1, 0)
-3
-2
-1
-1
-3
3
-2
2
1
-4
1
2
3
(-3, 0)
(-1, 0)
-3
(1, 0)
-2
-1
-1
-3
3
-2
2
1
-4
1
2
3
The X intercepts
(-3, 0)
(-1, 0)
-3
(1, 0)
-2
-1
-1
-3
3
-2
2
1
-4
1
2
3
The X intercepts
(-3, 0)
(0, -3)
(-1, 0)
-3
(1, 0)
-2
-1
-1
-3
3
-2
2
1
-4
1
2
3
The X intercepts
The Y intercept
(-3, 0)
(0, -3)
(-1, 0)
-3
(1, 0)
-2
-1
-1
-3
3
-2
2
1
-4
1
2
3

OBJECTIVE: COMPARE THE BEHAVIOR OF THE GRAPH

The destiny of our behavior is just congruent to the graph 

of a polynomial function

If we are positive thinker or optimistic, then we are always rising up

OBJECTIVE: COMPARE THE BEHAVIOR OF THE GRAPH

The destiny of our behavior is just congruent to the graph 

of a polynomial function

If we are positive thinker or optimistic, then we are always rising up

FALLING RISING

If we are positive thinker or optimistic, then we are always rising up

LEADING
COEFFICIENT
POSITIVE
DEGREE
EVEN
GRAPH
RISING RISING
BEHAVIOR OF GRAPH
FALLING RISING

If we are positive thinker or optimistic, then we are always rising up

LEADING
COEFFICIENT
POSITIVE
DEGREE
EVEN
ODD
GRAPH
FALLING RISING
RISING RISING
BEHAVIOR OF GRAPH
FALLING RISING

If we are negative thinker or pessimistic, then we are always falling down

LEADING
COEFFICIENT
NEGATIVE
DEGREE
EVEN
GRAPH
FALLING FALLING
BEHAVIOR OF GRAPH
FALLING RISING

If we are negative thinker or pessimistic, then we are always falling down.

LEADING
COEFFICIENT
NEGATIVE
DEGREE
EVEN
ODD
GRAPH
FALLING FALLING
RISING FALLING
BEHAVIOR OF GRAPH
FALLING RISING
Therefore, the behavior of the graph of
Polynomial function  f (x) = x3 +3x2 ––3
Therefore, the behavior of the graph of
Polynomial function  f (x) = x3 +3x2 ––3
is FALLING RISING
-3
-2
-1
-1
-3
3
2
1
-2
-4
1
2
3
Therefore, the behavior of the graph of
Polynomial function  f (x) = x3 +3x2 ––3
is FALLING RISING
-3
-2
-1
-1
-3
3
2
1
-2
-4
1
2
3
Move the answers given to the question mark.
P(x)= 4x3 – 3x2 –25– 6
P(x)= x3 +5x2 – 9x – 45 
P(x)= x4 +x3 –19x2 +11x+30
P(x)= –2x3 +3x2 +8x + 3
P(x)= x2 – 2x + 8
4x3
?
 x3
?
x2
?
-2
?
1
4
?
1
?
3
4
?
2
?
3
?
30
?
-6
?
8
?
3
P(x)= –2x3 +3x2 +8x + 3
P(x)= 4x3 – 3x2 –25– 6
P(x)= x4 +x3 –19x2 +11x+30
P(x)= x3 +5x2 – 9x – 45 
POLYNOMIAL FUNCTION
P(x)= x2 – 2x + 8

(x + 5)(x+1)(x-3)(x-2)

(x + 5)(x + 3)(x - 3)

(x - 3)(4x + 1)(x + 2)

(x - 4) (x + 2)

-(x +1)(2x + 1)(x -3)

FACTORS
CONSTANT
-45
8
        X INTERCEPTS
         Y 
INTERCEPT
P(x)= –2x3 +3x2 +8x + 3
P(x)= 4x3 – 3x2 –25– 6
P(x)= x4 +x3 –19x2 +11x+30
P(x)= x3 +5x2 – 9x – 45 
POLYNOMIAL FUNCTION
P(x)= x2 – 2x + 8

(x + 5)(x+1)(x-3)(x-2)

(x + 5)(x + 3)(x - 3)

(x - 3)(4x + 1)(x + 2)

(x - 4) (x + 2)

-(x +1)(2x + 1)(x -3)

FACTORS
CONSTANT
(4,0),(-2,0)
        X INTERCEPTS
(3,0),(-2,0),
(-1/4,0)
?
(-1,0),(3,0),(-1/2,0),
?
(-5,0),(-3,0),(3,0)
?
(-5,0),(-1,0),(3,0),(2,0)
?
         Y 
INTERCEPT
P(x)= –2x3 +3x2 +8x + 3
P(x)= 4x3 – 3x2 –25– 6
P(x)= x4 +x3 –19x2 +11x+30
P(x)= x3 +5x2 – 9x – 45 
POLYNOMIAL FUNCTION
P(x)= x2 – 2x + 8

(x + 5)(x+1)(x-3)(x-2)

(x + 5)(x + 3)(x - 3)

(x - 3)(4x + 1)(x + 2)

(x - 4) (x + 2)

-(x +1)(2x + 1)(x -3)

FACTORS
CONSTANT
        X INTERCEPTS
         Y 
INTERCEPT
(0, -45)
(0, 30)
?
(0, -6)
?
(0, 8)
(0, 3)
?
Falling Rising
Falling Falling
Leading
Coefficient
+
+
?
-
?
-
?
Rising Rising
Degree
Even
?
Odd
?
Even
Odd
?
Rising Rising
?
Rising Falling
Rising Falling
Falling Rising
?
Falling Falling
?
Behavior
of the Graph

The graph of  f (x) = x3+3x- 4x -12

STATION
Note: use ^ for exponentExample: 3x2 for  3x2

STATION 1

f (xx3+3x- 4x -12


 

Note: use ^ for exponentExample: 3x2 for  3x2

STATION 1

f (xx3+3x- 4x -12

Leading Term: 

Leading Coefficient: 

Degree: 

Constant: 


 

Note: use ^ for exponentExample: 3x2 for  3x2

STATION 1

f (xx3+3x- 4x -12

Leading Term: x3

Leading Coefficient: 1 

Degree: 3

Constant: -12 

FACTOR COMLETELY:

f (x) = (x+3)(x+2)(x-2)

 

STATION 2:

DETERMINE THE X AND Y INTERCEPTS AND PLOT THE POINT.


STATION 
What are the x intercepts of  f (x) = x3+3x- 4x -12 ?
 (0, -3), (0, -2), (0, -3 )
 (0, -3), (0, -2), (0, 2)
 (0, -3), (0, 2), (0, 3 )
 (0, 3), (0, -2), (0, 3 )
What is the y intercept of f (x) = x3+3x- 4x -12?
(-12, 0)
(0, 10)
(3, 0)
(0, -12)
Plot the points
-3
-2
-1
-3
-9
9
-6
6
3
-12
1
2
3
-3
-2
-1
-3
-9
9
-6
6
3
-12
1
2
3
(-3, 0)
?
(-2, 0)
?
-3
-2
-1
-3
-9
9
-6
6
3
-12
1
(2, 0)
?
2
(0, -12)
?
3
STATION 3:

DETERMINE THE BEHAVIOR AND CONNECT THE POINTS

f (x) = x3+3x- 4x -12

STATION
Use the magnetic graphing boardin graphing your answer.

STATION 3:

DETERMINE THE BEHAVIOR AND CONNECT THE POINTS

f (x) = x3+3x- 4x -12

What is the behavior of the graph?
Rising Rising
Falling Falling
Rising Falling
Falling Rising

The graph of  f(x) = x- 5x+5x2 +5x - 6


STATION
Note: use ^ for exponentExample: 3x2 for  3x2

STATION 1

f(xx- 5x+5x2 +5x - 6

Leading Term: 

Leading Coefficient: 

Degree: 

Constant: 

FACTOR COMLETELY:

f (x) (x+1)(x-1)(x-2)(x-3)

STATION 
 (0, -3), (0, -2), (0, 3 ) (-1, 0)
 (-1, 0), (1, 0), (2, 0), (3, 0)
 (0, -3), (0, -2), (0, 2 ) (-1, 0)
 (0, -3), (0, -2), (0, 3 ) (1,0)

STATION 2:

DETERMINE THE X AND Y INTERCEPTS AND PLOT THE POINT.

 f(xx- 5x+5x2 +5x - 6

X INTERCEPTS

STATION 2:

DETERMINE THE X AND Y INTERCEPTS AND PLOT THE POINT.

f(xx- 5x+5x2 +5x - 6

What is the Y intercept?
(0, -6)
(-12, 0)
(3, 0)
(0, -12)

STATION 2:

DETERMINE THE X AND Y INTERCEPTS AND PLOT THE POINT.

f(xx- 5x+5x2 +5x - 6

(-1, 0)
?
(1,0)
?
(0, -6)
?
(2, 0)
?
(3, 0)
?
STATION
Use the magnetic graphing boardin graphing your answer.

STATION 3:

DETERMINE THE BEHAVIOR AND CONNECT THE POINTS

f (x) = x- 5x+5x2 +5x - 6


What is the behavior of the graph?
Falling Falling
Rising Falling
Falling Rising
Rising Rising
P(x)= 2x2 - 3x5 –1
P(x)= -3x4 - 2x –8
P(x)= -x3 + 4x3 –1
P(x)= x5 - 3x3 –2x
Polynomial Function
Leading 
Coefficient
Positive
P(x)= 2x2 - 3x5 –1
P(x)= -3x4 - 2x –8
P(x)= -x3 + 4x3 –1
P(x)= x5 - 3x3 –2x
Polynomial Function
Leading 
Coefficient
Positive
Positive
Negative
Negative
Odd
Degree
Falling Rising
P(x)= 2x2 - 3x5 –1
P(x)= -3x4 - 2x –8
P(x)= -x3 + 4x3 –1
P(x)= x5 - 3x3 –2x
Polynomial Function
A
Falling Falling
Leading 
Coefficient
Positive
Negative
Positive
Negative
B
Odd
Even
Odd
Even
Rising Rising
Degree
C
Behavior of
the Graph
D
?
C
?
A
?
B
Rising Falling
D

IF THE LEADING COEFFICIENT IS POSITIVE WITH ____________ DEGREE,

THE GRAPH IS FALLING RISING.


IF THE LEADING COEFFICIENT IS ______________ WITH EVEN DEGREE,

 THE GRAPH IS FALLING FALLING.


IF THE LEADING COEFFICIENT IS POSITIVE WITH EVEN DEGREE, 

THE GRAPH IS ________________.


IF THE LEADING COEFFICEINT IS NEGATIVE WITH ODD DEGREE, 

THE GRAPH IS ________________

RISING FALLING
?
RISING RISING
?
NEGATIVE
?
ODD
?
Students who took this test also took :

Created with That Quiz — where a math practice test is always one click away.