In this assignment, you will practice rewriting expressions involving negative and rational exponents. Some sample problems are shown below: (a)-3 = Negative and Rational Exponents 1a3 √ 25 = 25 1 2 (A) 21 (C) ـــــــ Express 7-3 using positive exponents. 1 73 (D) ـــــ (B) 4 1 7-3 (A) ــــــ (C) ـــــــ Express 5-4 using positive exponents. 4 5 54 (B) ـــــــ (D) ـــــ 154 1 45 (A) ــــــ Express m-7 using positive exponents. (C) ـــــــ 17m 7m (D) ـــــ (B) ـــــــ 1m7 7m (A) ــــــ (C) ـــــــ Evaluate 5-3 -1125 35 (B) ـــــــ (D) ــــــ 1125 53 (A) ــــــ Evaluate 1 2-5 (C) 32 110 (D) -32 (B) ـــــــ 132 (A) ــــــ Evaluate -1 3-2 (C) 9 -1 9 (D) -9 (B) ـــــــ 1 9 (A) ــــــ Evaluate 23 • 3-2 (C) ـــــــ 8-9 89 (B) ـــــــ (D) ـــــ 98 172 (A) 5-2 Write ـــــــ using negative exponents (C) 0.04 1 25 (D) ـــــ (B) 2-5 15-2 Another way of writing square root is using a power of 1/2. Write the radical using a rational exponent. √ 36 = (36) Another way of writing square root is using a power of 1/2. Write the radical using a rational exponent. 5 = (5) Another way of writing square root is using a power of 1/2. Write the radical using a rational exponent. 53 = (5) Another way of writing square root is using a power of 1/2. Write the radical using a rational exponent. 35 = (3) Another way of writing square root is using a power of 1/2. Write the radical using a rational exponent. x5 = ( ) Another way of writing square root is using a power of 1/2. Write the radical using a rational exponent. (-6)3 = ( ) Another way of writing cube root is using a power of 1/3. Write the radical using a rational exponent. Then evaluate the expression. 8 3 = (8) = Another way of writing cube root is using a power of 1/3. Write the radical using a rational exponent. Then evaluate the expression. √ -27 3 = ( ) = Another way of writing cube root is using a power of 1/3. Write the radical using a rational exponent. Then evaluate the expression. 82 3 = ( ) = |