Math 3rd Assessment for SS 1
- 1. 1. Convert [[37]]_10 to base five
A) 1001011 B) 1225 C) 122 D) 1023
- 2. 2. Convert [[1264]]_8 to base ten
A) 117 B) 629 C) 692 D) 171
- 3. 3. Convert [[211]]_3 to base eight
A) 7 B) 62 C) 11 D) 26
- 4. 4. Convert 1.101 to decimal
A) 0.625 B) 0.25 C) 0.125 D) 1.625
- 5. 5. In what base is the addition 465 + 24 + 225 = 1050?
A) 5 B) 7 C) 6 D) 9
- 6. 6. Calculate [[212]]_3 x [[201]]_3 giving your answer as a number in base three
A) 11512 B) 113021 C) 121012 D) 10152
- 7. 7. Evaluate 11110 ÷ 110
A) 1100 B) 1011 C) 110 D) 101
- 8. 8. If [[34]]_5= 23_x, find x.
A) x = -8 B) x = 8 C) x = 16 D) x = -16
- 9. 9. Simplify 0.0589 + 7.382 - 0.7953 correct to 2 decimal places.
A) 6.64 B) 8.20 C) 8.24 D) 6.65
- 10. 10. Evaluate 6 - 36( mod 9)
A) 5 B) 6 C) 3 D) 0
- 11. 11. Evaluate 27 x (20 x 3-2)/ 4-½
A) 12 B) ⅓ C) 6 D) 48
- 12. 12. If x is a whole number such that 2x +1 =4 mod 7, find the least value of x.
A) -1 B) 3 C) 5 D) 2
- 13. 13. Simplify 125-2/3 x 15
A) ⅔ B) ⅗ C) ⅚ D) 13
- 14. 14. Evaluate (3.69 x 105) ÷ (1.64 x 10-3)
A) 2.25 x 10-8 B) 2.25 x 108 C) 2.25 x 10-2 D) 2.25x 102
- 15. 15. Express the sum of 6.03 x 106 and 2.17 x 105 in standard form.
A) 624.7 x 1011 B) 62.47 x 106 C) 6.247 x 1011 D) 6.247 x 106
- 16. 16. Express 0.0006131 in standard form
A) 613.1 x 10-4 B) 6.131 x 104 C) 613.1 x 104 D) 6.131 x 10-4
- 17. 17. Simplify (1/16)-¾ + 5 (90)
A) 2/3 B) 3½ C) 7/25 D) 13
- 18. 18. Evaluate 2 ÷ (64/125)-⅔
A) 3 ½ B) 2 ⅛ C) 5 ⅚ D) 1 ⁷/25
- 19. 19. Simplify 125⅓ x 49½ x 10-1
A) 3 ½ B) 6 ⅞ C) 35/5 D) 2 ⅓
- 20. 20. Given that 102 = 100, write the expression in logarithmic form
A) 3 = log10 100 B) 2 = log10 100 C) 1 = log10 102 D) 100 = log10 2
- 21. 21. Simplify [[log]]_3 54 + [[log]]_3 15 - [[log]]_3 10
A) 12 B) 49 C) 4 D) 5.9
- 22. 22. Evaluate [[log]]_10 45 + [[log]]_10 9-1 - [[log]]_10 2-1 without using table
A) 10 B) 5 C) 1 D) 2
- 23. 23. Simplify [[log]]_10 √1000
A) ½ B) ⅔ C) 1½ D) 10
- 24. 24. Evaluate [[110100]]_2 ÷[[100]]_2
A) [[1111]]_2 B) [[1010]]_2 C) [[1101]]_2 D) [[1001]]_2
- 25. 25. If 23_x = [[32]]_5, find the value of x
A) 6 B) 5 C) 7 D) 4
- 26. 26. Evaluate 4 + (3 x 2) mod 6
A) 0 B) 2 C) 10 D) 4
- 27. 27. Sum up the following numbers 0.032, 4.154, 6.0 and 0.3065, to two decimal places
A) 11.00 B) 10.50 C) 10.49 D) 10.40
- 28. 28. Approximate 65009.269 to 1 significant figure.
A) 65009.300 B) 650009.270 C) 70000.000 D) 65010.000
- 29. 29. Express the number 0.0099687 correct to four decimal places
A) 0.0090 B) 0.0010 C) 0.0100 D) 0.0099
- 30. 30. Solve [[log]]_3 (2x + 1) - [[log]]_3 (x - 3) = 2
A) 2 B) 3½ C) 8 D) 4
|
Students who took this test also took :