Solving quadratics with complex solutions MC
__ | 1. | -x2 - 4 = 14 | | A. | x = -i√3 or i√3 | __ | 2. | 2x2 + 9 = -41 | | B. | x = -i√(11) or i√(11) | __ | 3. | 3x2 - 1 = 7x2 | | C. | x = -2i or 2i | __ | 4. | 3x2 = -81 | | D. | x = -3i√3 or 3i√3 | __ | 5. | 5x2 + 18 = 3 | | E. | x = -5i or 5i | __ | 6. | 8x2 + 7 = 5x2 + 4 | | F. | x = -3i√2 or 3i√2 | __ | 7. | x2 = -4 | | G. | x = -i or i | __ | 8. | x2 = -11 | | H. | x = -½i or ½i |
__ | 9. | (x - 2)2 = -16 | | A. | x = -4-3i or -4+3i | __ | 10. | -3(x-9)2 = 81 | | B. | x = -4-2i or -4+2i | __ | 11. | -6(x + 5)2 = 120 | | C. | x = 2-4i or 2+4i | __ | 12. | -⅛(x + 3)2 = 7 | | D. | x = -5-2i√5 or -5+2i√5 | __ | 13. | 3(x+4)2 = -27 | | E. | x = -3-2i√14 or -3+2i√14 | __ | 14. | 6x2 - 12 = 0 | | F. | x = -i√2 or i√2 | __ | 15. | 11x2 + 10 = 7x2 + 2 | | G. | x = -i√2 or i√2 | __ | 16. | ¼(x - 4)2 +1 = 0 | | H. | x = 9-3i√3 or 9+3i√3 |
|
Students who took this test also took :