- 1. 1. Convert [[1264]]_8 to base ten
A) 117 B) 629 C) 692 D) 171
- 2. 2. Convert [[211]]_3 to base eight
A) 7 B) 11 C) 62 D) 26
- 3. 3. In what base is the addition 465 + 24 + 225 = 1050?
A) 7 B) 9 C) 5 D) 6
- 4. 4. Evaluate 11110 ÷ 110
A) 1100 B) 101 C) 110 D) 1011
- 5. 5. Simplify 0.0589 + 7.382 - 0.7953 correct to 2 decimal places.
A) 6.65 B) 6.64 C) 8.24 D) 8.20
- 6. 6. Simplify 125-2/3 x 15
A) ⅗ B) ⅚ C) 13 D) ⅔
- 7. 7. Evaluate (3.69 x 105) ÷ (1.64 x 10-3)
A) 2.25 x 10-2 B) 2.25 x 10-8 C) 2.25x 102 D) 2.25 x 108
- 8. 8. Express the sum of 6.03 x 106 and 2.17 x 105 in standard form.
A) 624.7 x 1011 B) 62.47 x 106 C) 6.247 x 1011 D) 6.247 x 106
- 9. 9. Simplify (1/16)-¾ + 5 (90)
A) 3½ B) 13 C) 2/3 D) 7/25
- 10. 10. Evaluate 2 ÷ (64/125)-⅔
A) 3 ½ B) 2 ⅛ C) 1 ⁷/25 D) 5 ⅚
- 11. 11. Simplify 125⅓ x 49½ x 10-1
A) 6 ⅞ B) 35/5 C) 3 ½ D) 2 ⅓
- 12. 12. Evaluate [[log]]_10 45 + [[log]]_10 9-1 - [[log]]_10 2-1 without using table
A) 10 B) 1 C) 5 D) 2
- 13. 13. Evaluate [[110100]]_2 ÷[[100]]_2
A) [[1101]]_2 B) [[1001]]_2 C) [[1010]]_2 D) [[1111]]_2
- 14. 14. Approximate 65009.269 to 1 significant figure.
A) 65010.000 B) 65009.300 C) 70000.000 D) 650009.270
- 15. 15. Express the number 0.0099687 correct to four decimal places
A) 0.0099 B) 0.0100 C) 0.0090 D) 0.0010
- 16. 16. Solve [[log]]_3 (2x + 1) - [[log]]_3 (x - 3) = 2
A) 8 B) 2 C) 3½ D) 4
- 17. 17. Simplify log 27/ log 9
A) 3/4 B) 2 C) 1½ D) log 3/2
- 18. 18. Evaluate [[log]]_10 (⅓ + ¼) + 2 [[log]]_10 2 +[[log]]_10 (3/7)
A) 1 B) ⅚ C) 0 D) -3
- 19. 19. Evaluate without using calculator, [[log]]_10 √30 - [[log]]_10 √6 + [[log]]_10 √2
A) -3 B) 1 C) ½ D) 3/2
- 20. 20. Evaluate ([[203]]_4)2
A) 10012 B) 103021 C) 12002 D) 2030
|