- 1. Using the Unit Circle, evaluate sec (22π/3)=
A) -(√3)/2 B) -2(√3)/3 C) -2 D) -1/2
- 2. Using the Unit Circle, solve for ø, 0 ≤ ø < 2π. csc ø = undefined
A) ø = 0, π, 2π B) ø = π, 2π C) ø = 0, π D) ø = π/2, 3π/2
- 3. Find the length of the arc created by a central angle of 230º on a circle with radius 14 feet.
A) 3220 ft B) 56.20 ft C) 17.89 ft D) 16.43 ft
- 4. Given sin ø = 3/8 and tan ø < 0, find cos ø.
A) cos ø = (√55)/3 B) cos ø = -(√55)/3 C) cos ø = (√55)/8 D) cos ø = -(√55)/8
- 5. Given tan ø = undefined and sin ø < 0, find csc ø.
A) csc ø = 0 B) csc ø = undefined C) csc ø = -1 D) csc ø = 1
A) 4.445 B) 1.0263 C) -32.284 D) 0.225
- 7. Given tan ø = -1.325, find 2 values of ø between 0 and 2π.
A) ø = 4.06, 5.36 B) ø = 0.92, 2.22 C) ø = 2.22, 5.36 D) ø = .92, 4.06
- 8. Given sec ø = 2.6, find 2 values o between 0º and 360º.
A) ø = 2.6º, 357.4º B) ø = 67.38º, 292.62º C) ø = 67.38º, 112.62º D) ø = 67.38º, 247.38º
- 9. Determine the quadrant in which ø lies: sec ø < 0 and tan ø > 0
A) I B) IV C) II D) III
- 10. Complete the identity: sin2 ø + cos2 ø = _______
A) tan2 ø B) 2 C) 0 D) 1
- 11. Find the reference angle for 25π/7.
A) ø' = -π/7 B) ø' = 11π/7 C) ø' = 4π/7 D) ø' = 3π/7
- 12. Find the reference angle for -2.76. HINT: This is radians.
A) ø' = -0.38 B) ø' = 0.38 C) ø' = -2.76 D) ø' = 1.19
- 13. The point (4, -2) is on the terminal side of an angle in standard position. Determine the EXACT (no decimals) value of sin ø.
A) sin ø = -(√5)/5 B) sin ø = -1/2 C) sin ø = 2(√5)/5 D) sin ø = -(√5)
|