Funciones polinómicas
  • 1. Las raíces de la función polinómica f cuya expresión es f(x) = 12x³ - 27x son:
A) -1,5 ; 0 ;1,5 ;3
B) -1,5 ; 1,5 ; 3
C) -1,5 ; 0 ; 1,5
D) no posee raíces reales
  • 2. La regla de Ruffini
A) sirve para dividir un polinomio cualquiera entre otra de la forma x - a
B) es una regla de cálculo de poca utilidad
C) es una forma más cómoda de realizar una división
  • 3. Una función polinómica de segundo grado
A) puede no tener raíces reales
B) siempre es producto de dos polinomios de primer grado
C) siempre puede descomponerse en factores
D) tendrá siempre dos raíces distintas
  • 4. Las raíces de la función polinómica f cuya expresión es f(x) = x³ - 7x - 6 son:
A) 1 ; 2 ; 3
B) -2 ; -1 ; 3
C) -3 ; -2 ; -1
D) 1 ; 2 ; 5
  • 5. Si el valor numérico de p(x) en x = 2 es cero, entonces:
A) -2 es raíz de p
B) p(2) = 0
C) p(x) es divisible entre (x + 2)
  • 6. Si el valor numérico de p(x) en x = 3 es cero, entonces: x – 2 es divisor de p(x) p(2) = 0 p(x) es divisible entre x + 2 El resto de la división p(x) : x – 2 es cero.
A) el resto de la división de p(x) entre (x - 3) es 0
B) p(-3) = 0
C) -3 es raíz de p
  • 7. Si -7 es raíz de f entonces
A) f(-7) = 0
B) el valor numérico de f(x) en x = 7 es 0
C) f(x) es divisible entre (x - 7)
  • 8. El valor numérico de p(x) = 2x³ – 3x² + 5x – 1 en x = – 2 es:
A) -87
B) 39
C) -39
  • 9. Si al dividir q(x) entre x + a, se obtiene resto cero:
A) q(-a) = 0
B) q(0) = 0
C) q(a) = 0
  • 10. El resultado de (3x – 2 )² es: 9x2 – 6x + 4 9x2 – 12x – 4 9x2 – 12x + 4
A) 9x² – 12x + 4
B) 9x² – 12x – 4
C) 9x² – 6x + 4
  • 11. Una función polinomica de tercer grado:
A) Pude tener sus tres raíces imaginarias
B) Si no tiene una raíz entera, no sabemos descomponerlo en factores.
C) Como máximo puede tener tres raíces.
  • 12. Una función polinómica de segundo grado:
A) Posee como máximo tres raíces reales distintas.
B) Tendrá siempre dos raíces reales distintas.
C) Puede no tener raíces reales.
  • 13. El resultado de calcular (3x + 1)² es:
A) 9x² + 1
B) 3x² + 6x + 1
C) 9x² + 6x + 2
D) 9x² + 6x + 1
  • 14. La descomposición en factores de x³ – 2x² es: 2x (x2 – 1) x2 (x – 2) x (x2 – 2x) 2x (x – 1)
A) 2x (x² – 1)
B) 2x (x – 1)
C) x² (x – 2)
参加了这次测试的学生也参加了 :

创建 That Quiz — 在数学和其他学科的出题与测试更加便利。.