ThatQuiz Biblioteca Intenteu aquesta prova
Tema 3 Monomis i Polinomis Opera i Simplifica
Contribució de: Galvis Bellés
  • 1. x (x2 – 5) – 3x2 (x + 2) – 7 (x2 + 1) =
A) –2x3 – 13x2 – 5x – 7
B) x2 – 5x – 7
C) 3x4 – 5x – 7
D) -13x2 + 5x +7
E) Cap de totes
  • 2. 5x2 (–3x + 1) – x (2x – 3x2) – 2 · 3x =
A) 12x3 - 3x2 + 6x
B) –12x6 + 3x4 – 6x
C) Cap de totes
D) –12x3 + 3x2 – 6x
E) –12x3 + 9x2 – 6x
  • 3. (2x2 + 3)(x – 1) – x (x – 2) =
A) 2x3 – 3x4 + 5x2 – 3
B) 2x3 – 3x2 + 5x – 3
C) 2x3 – 6x2 + 10x – 9
D) Cap de totes
E) 2x3 – -3x2 - 5x + 3
  • 4. (x2 – 5x + 3)(x2 – x) – x(x3 – 3) =
A) –12x3 + 16x2
B) –1–6x6 + 8x4
C) –6x3 + 8x2
D) 6x3 - 8x2
E) Cap de totes
  • 5. 6x2 – 7x2 + 3x2
A) -2x2
B) 2x6
C) 2x2
D) 2x4
E) Cap de totes
  • 6. Per a sumar Monomis
A) Mai es poden sumar
B) Sols si coincideix del coeficient
C) Tenen que ser semblats
D) Es poden sumar tots
E) Sols es multipliquen
  • 7. Per a multiplicar Monomis
A) Tenen que ser semblats
B) Mai es poden multiplicar
C) Sols es poden sumar
D) Es multiplquen els exponents amb coincidencia de la part literal i es sumen els coeficients
E) Es multipliquen els coeficients i es sumen els exponents de la part literal coinciden
  • 8. Dos monomis son Semblats
A) Quan tenen el mateix coeficien
B) Quan tenen el mateix exponent
C) Quan tenen identica part literal
D) Quan son inversos
E) Quan tenen el mateix signe
  • 9. 3x2zy3 i -13y3zx2z Aquests monomis son semblats
A) Si
B) No
  • 10. 3x4zy6 i 3y3zx2z Aquests monomis son semblats
A) No
B) Si
Altres proves d'interés :

Prova creada amb That Quiz — el lloc de proves matemàtiques per a alumnes de tots nivells.