Tema 3 Monomis i Polinomis Opera i Simplifica
  • 1. x (x2 – 5) – 3x2 (x + 2) – 7 (x2 + 1) =
A) Cap de totes
B) –2x3 – 13x2 – 5x – 7
C) -13x2 + 5x +7
D) 3x4 – 5x – 7
E) x2 – 5x – 7
  • 2. 5x2 (–3x + 1) – x (2x – 3x2) – 2 · 3x =
A) –12x3 + 3x2 – 6x
B) Cap de totes
C) –12x6 + 3x4 – 6x
D) 12x3 - 3x2 + 6x
E) –12x3 + 9x2 – 6x
  • 3. (2x2 + 3)(x – 1) – x (x – 2) =
A) Cap de totes
B) 2x3 – -3x2 - 5x + 3
C) 2x3 – 3x2 + 5x – 3
D) 2x3 – 3x4 + 5x2 – 3
E) 2x3 – 6x2 + 10x – 9
  • 4. (x2 – 5x + 3)(x2 – x) – x(x3 – 3) =
A) –6x3 + 8x2
B) –12x3 + 16x2
C) 6x3 - 8x2
D) –1–6x6 + 8x4
E) Cap de totes
  • 5. 6x2 – 7x2 + 3x2
A) -2x2
B) 2x4
C) 2x6
D) 2x2
E) Cap de totes
  • 6. Per a sumar Monomis
A) Es poden sumar tots
B) Sols es multipliquen
C) Sols si coincideix del coeficient
D) Mai es poden sumar
E) Tenen que ser semblats
  • 7. Per a multiplicar Monomis
A) Es multiplquen els exponents amb coincidencia de la part literal i es sumen els coeficients
B) Mai es poden multiplicar
C) Sols es poden sumar
D) Es multipliquen els coeficients i es sumen els exponents de la part literal coinciden
E) Tenen que ser semblats
  • 8. Dos monomis son Semblats
A) Quan son inversos
B) Quan tenen identica part literal
C) Quan tenen el mateix signe
D) Quan tenen el mateix coeficien
E) Quan tenen el mateix exponent
  • 9. 3x2zy3 i -13y3zx2z Aquests monomis son semblats
A) Si
B) No
  • 10. 3x4zy6 i 3y3zx2z Aquests monomis son semblats
A) Si
B) No
Alunos que fizeram este teste também fizeram :

Criado com That Quiz — página com testes de matemática para alunos.